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6-1 REACTOR THEORY 

BY 

John W. Weilt 

The principal object of reactor theory is to provide useful techniques which will 
give an accurate description of the spatial and energy distributions of neutrons within 
a chain-reacting system. In a system operating in the steady state it is required that 
for a given source of neutrons born in fission the slowing down and eventual capture 
or loss of these neutrons shall be correctly described. The resulting distribution of 
fissions induced by these neutron captures must agree both in strength and in dis- 
tribution with the given source. Only if this condition is satisfied will the reactor be 
critical and operating in an equilibrium condition. 

In order to be of use to engineers, reactor theory must obtain this correct description 
of the neutron distribution for reactor geometries of engineering interest and must 
include a realistic representation of the complex nuclear cross sections of the materials 
of which the system is composed. It often turns out, however, that these practical 
considerations prevent the accurate mathematical descriptions from being brought 
to a solution with any reasonable amount of effort. Consequently, the subject of 
reactor theory is largely composed of methods which may be used to obtain approxi- 
mate solutions to a detailed problem for various special cases’of engineering interest. 
This chapter is devoted, then, to a discussion of these approximations and their 
validity in order to present an over-all viewpoint to the nuclear engineer, Detailed 
mathematical treatment is left to the references. 

In choosing among the various available methods, one should consider several 
specific questions: 

IS it possible to use some rough but convenient approximation to provide a general 
idea of the situation? This often allows effort in other areas to proceed and, in addi- 
tion, allows for a more effective concentration of refined calculation in the areas of 
most importance. 

Are neutrons of all energies equally important to the behavior of the chain-reacting 
system, or are certain neutron energies of particular importance? In this latter 
case perhaps a treatment of a limited number of neutron energies will suffice and will 
help to reduce the mathematical complexity. 

Is the majority of the reactor volume distant from boundaries by a mean free path 
or more? If so, certain valuable simplifications can be made in the form of the equa- 
tions to be used. 

Or, in the other extreme, is the reactor composed of a structure so fine that all 
detailed description can be neglected? It may then be possible to treat the entire 
medium as homogeneous if suitable care is exercised in formulating the equivalent 
homogeneous material. 

Will the system behavior be sensitive to details of geometrical shape? If it will 
not, then simplified geometries may be used for calculation with great reduction in the 
effort because of a reduction in the number of dimensions to be handled or b&cause of 
the occurrence of simpler mathematical functions. 

Are important variations in composition of the system of a gradual nature? It 
may be entirely satisfactory to represent these variations by choosing several regions 
of uniform composition and connecting them with appropriate boundary conditions. 

t The assistance of Drs. J. Sampson and T. M. Snyder in the preparation of portions of this material 
is gratefully acknowledged. The mat&s1 was reviewed by Drs. P. Zweifel and T. M. Snyder. 
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Great reduction in over-all calculational effort can be achieved with little reduction 
in accuracy by judicious selection of approximate methods. However, cases will 
occur where very few approximations can be made with accuracy, and the system 
%vill, in the end, have to be studied in an experimental mock-up or critical experin 
in order to establish sufficient confidence in the prediction of final system performance. 

1 NEUTRON TRANSPORT 

The study of the physical processes which may occur to a neutron in a system com- 
posed of scattering and absorbing materials is called neutron transport. In neutron 
transport no attempt is made to obtain a chain reaction or, for that matter, to treat 
s.ny other processes except those which cause a change in the space or energy coordi- 
nates of the neutron. The combination of neutron transport with other physical 
nhertomena to form a power-producing, chain-reacting system is treated in Art. 5. 

1.1 The Boltzmann Equation 

It is possible to derive an equation which rigorously describes the behavior of 
neutrons in any scattering or slowing-down material. This equation is based on the 
fundamental physical principle of neutron conservation within a closed system. 

Consider the vector neutron flux 

t44Q,r) 

whiph is a vector whose magnitude 6 is the number of neutrons of speed v which in 
one second cross a unit of area perpendicular to the vector direction P at the position 
given by the vector r. 

The equation for the conservation of neutrons is, then, composed of terms which 
represent the various possible sources and sinks in a system. The net number of 
neutrons leaving a unit volume per unit time in the speed interval dv and the direction 

j I; 

interval da is 
V * +(v,a,r) dv da 

The number of neutrons removed from this unit volume and this speed interval and 
direction interval by all forms of interaction with other nuclei, including slowing-down, 
iS 

NC(V) +(v,&r) dv dQ 

where N = atomic density of the medium, atoms/cm3 
U(V) = cross section for all removal interactions, cmz/atom (For an isotropic 

medium with no crystal effects this is independent of a) 
The number of neutrons introduced into the unit volume and into this speed and 
direction interval by slowing-down collisions involving a change in speed v and/or a 
change in direction P will be equal to the number of these collisions integrated over all 
possible original speeds and directions. This source is, then, 

dv da I[ +(v’,Q’,r)N~,(v,v’,Q&Y) dv’ da’ 

where the primed quantities represent the speed and direction of the neutron before 
the interaction and where the quantity ~~(v,v’,sZ,P’) is a form of differential cross 
section and is a function of the initial and final speeds and of the difference between 
the initial and final directions, although not of either direction separately in an iso- 
tropic medium. 

Finally, the source of neutrons introduced into the unit volume and into this 
velocity interval by externa1 means is taken to be 

S(v,$r) dv da 

This term can be used to represent neutrons born in fission or introduced by some 
external means. 
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Clearly if the rate of change of neutrons within the unit volume and this velocity 

(speed and direction) interval is to be zero (that is, the system is in steady state), 
then the number of neutrons entering the unit volume and this velocity interval must 
equal the number of neutrons leaving the same volume and velocity interval. 
ing t.hese two quantities yields 

Equat- 

V. @(v&J) + Nc(a)+(v,Q,r) = S(v,P,r) + 
II 

~(u’,P’,r)Na~(v,v’,P,p’) dv’ da’ 

V’O’ 

This is the steady-state Boltzmann equation and is the basic equation governing 
the behavior of neutrons in a system containing arbitrary scattering and absorbing 
materials. To be completely general the atomic density and the cross sections must 
be considered to be functions of position, but it will suffice to treat the case for a 
uniform medium. 

If all the cross sections and sources involved were known experimentally, and if the 
equation could be solved, a rigorous description of the neutron flux would result. 
Unfortunately, the Boltemann equation is an integrodifferential equation involving 
source and cross section functions of an arbitrary nature. As a consequence, it 
cannot be solved exactly for any but a few highly restricted cases. For most engineer- 
ing purposes, approximations to this equation or approximate reformulations of it 
are of most use. To obtain equations of manageable difficulty it is usually necessary 
to make approximations as to both the space-wise and the energy-wise behavior of 
the neutrons. Below are treated briefly a number of such approximations to the 
Boltzmann equation which have been of use in practical problems. 

1.2 The Space-independent Integral Equation 

For cases where the neutron distribution is space independent or where the flux is 
slowly varying, it is possible to make a reduction in the complexity of the Boltzmann 
equation. For a region of constant flux the divergence term is zero. Then integrat- 
ing over the various directions of the velocity vector yields 

No(u)+(u) = S(v) + l, [I ~(u’,SZ’)N~.(u,v’,9,SZ’) da da’] dv’ 

8x2’ 

This space-independent Boltzmann equation is then rearranged into an equation for 
the collision density $. The collision density is equal to the neutron flux times the 
total probability of a collision (the cross section). Consequently, the space-inde- 
pendent equation can be made to take the form of an integral equation (in the energy 
variable E instead of the speed u) 

+(E) = jE, s$ sULWti(E’) dE’ + S(E) 

where the kernel y(E,E’) is now the probability that a neutron of energy E’ will be 
slowed down to energy E as the result of a scattering collision which it undergoes with 
probability c,(E’). 

Solutions of this equation depend upon the choice of the kernel g(E,E’). Because 
this kernel will have energy cutoffs for most elements (that is, a neutron can lose 
only a fixed maximum fraction of its incident energy upon collision with an atom of 
mass greater than the neutron mass) both limits of the integral will become functions 
of the energy E. 
solution. 

This situation does not lead to a form of the equation convenient for 
Thus, the variable limit on the integral is usually avoided by using one of a 

number of synthetic kernels. These kernels do not give an exact description of the 
slowing-down process but are approximate functions which do not differ greatly from 
the correct function and which will yield a convenient reduction of the integral. 
A discussion of these synthetic kernels is included in several references. 1, t 

t Superscript numbers refer to References at end of subsection. 
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1.3 The Hydrogen Equation 

6-5 

For the case of hydrogen a neutron may lose all its energy in one collision. The 
slowing-down kernel may be shown to have the form 

g(E,E’) = 4, if E’ 5 E’ 

= 0 if E > E’ 

and only the lower limit on the integral is a function of the energy E. Consequently, 
the integral equation reduces directly to the differential equation 

m + e,(E) W) dS (E) 
dE 

----~---=o 
a(E) E dE 

which may be solved explicitly. The solution is 

+(E) = Nat(E) e(E) = f ,/i $i: S(E’) exp [ - lEB’ ~~~~:~j$~‘] dBt + S(E) 

1.4 The One-velocity Boltzmann Equation 

Let us return now to the original Boltzmann equation (see Art. 1.1) and seek methods 
of solution which do not require the assumption of a space-independent neutron distri- 
bution. Quite obviously there will be many engineering cases where such an approxi- 
ma’tion will be useless. Bowever, there are often cases where the energy dependence of 
the neutron flux can be neglected. In these cases the Boltemann equation reduces 
immediately to 

V * +(r,Q) + Nd(r,Q) = 
/ 

*, Nu,(f+‘) @(r&V) da’ + S(r,n) 

This equation forms the basis for a great many engineering calculations and is of 
particular value in treating the distribution of thermal neutrons in a reactor. 

The most common method for treating this equation is the spherical harmonics 
method which is discussed in Art. 2. The principal result of such treatment is the 
approximate reduction of this inte,grodifferential equation to a differential equation 
called the diffusion equation: 

D v*+ (r) - Nu,+(r) + S(r) = 0 

where D is the diffusion constant, a property of the medium. This equation can be 
solved explicitly for a number of cases of particular interest. It can also be shown 
that this equation yields solutions which are the asymptotic solutions of the one- 
velocity Boltzmann equation at points distant from boundaries and in low-absorption 
media. For this reason it forms the basis for many special methods discussed later 
on and has been used extensively for obtaining a first, reasonable estimate of the 
characteristics of many engineering systems. 

A special form of the one-velocity Boltzmann equation can be obtained from con- 
sideration of the collision density $, which was discussed earlier in connection with the 
integral form of the space-independent equation. If $ is the collision density and the 
kernel K(lr - r’l) is defined as the probability that a neutron which starts at r’ will 
have its first collision at r, then the number of neutrons per unit volume which will 
have their first collision at r is given by 

h(r) = L, S(r’)K(lr - r’l) dr’ 

where S(r’) is an isotropic source which may vary with position and where the kernel 
is given by 

K(lr - r’l) = (Tt 
4+ - r’12 

e--orlr--r’; 

i 



6-6 REACTOR PHYSICS [SEC. 6 

K(lr - r’l) is the product of the inverse-square-law attenuation which is characteristic 
of a point source times the exponentialprobability that the neutron will arrive at the 
point r, having traveled the path length Ir - r’j without having a collision, times the 
probability of its having a collision at r. The latter is simply the total collision cross 
section at r. If all scattering and absorption events are now regarded as absorptions, 
with I + f neutrons being emitted as the result of the absorption, then all collisions 
can be regarded as first collisions. By definition 

1 ffb-1 = Us(T) -I- w(4 
a (7) 

where Y is the number of neutrons emitted per fission. The equation for the collision 
density then becomes (where all collisions are regarded as first collisions) 

IL(r) = i, K(lr - r’l) (S(r’) + [l +f(fl)]$(r’)) dr’ 

This is the integral formulation of the one-velocity Boltsmann equation. Note, 
however, that in the conversion of all collisions to first collisions the correlation 
between incident and scattered neutron directions has been lost. To this extent, 
this equation is less general than the integrodifferential formulation of the one-velocity 
Boltzmann equation. 

Integration of the point kernel K(lr - r’j) over various geometries results in the 
derivation of simpler forms of kernels for use in restricted geometries. The forms of 
the line, plane, and cylindrical and spherical shell kernels are given in Art. 2.25 of 
Sec. 6-2 and in Refs. 2. 

1.6 The Fermi Age Equation 

Let us examine now several techniques for obtaining approximate solutions to the 
Boltzmann equation where both space and energy variations in the neutron flux 
must be treated. Of these methods the simplest, and perhaps most direct, is the 
Fermi age technique. The age equation is based upon the continuous slowing-down 
model, which states that in each collision with a moderating atom a neutron loses an 
amount of energy characterized by the mean logarithmic energy decrement 

and that for sufficiently heavy nuclei (where A is sufficiently large), the slowing down 
of the neutron can be approximated by a continuous history with a parameter 5. 
This picture holds only very roughly for light elements where a neutron may lose a 
large amount of energy in one collision. For heavier elements the continuous slow- 
ing-down model is, however, very satisfactory. One important result of the con- 
tinuous slowing-down model is the identification of the slowing-down density 

dr,E) = W~d4r,E) 

which is the number of neutrons slowing down below a given energy E per unit time 
per unit volume. 

The diffusion equation, including a slowing-down source, is written 

D v%$ (r,E) - Na,$(r,E) -k 9 + S(r,E) = 0 

Introducing the continuous slowing-down model and defining the Fermi age 

/ 
En D dE’ 

’ = 
-- 

E ENo, E’ 
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the age equation with absorption results: 

V*q (r,+) - 9 q(r,7) - ‘9 + S’(r,7) = 0 

If the resonance escape probability is defined as 

then the redefinition of the slowing-down density as 

P = P(E,WP’ 

gives immediately the result that 

This shows that the solution with absorption, upon proper treatment 0 
f the external 

source term, is simply the solution of the Fermi age equation with0 
ut absorption 

multiplied by the resonance escape probability. of interest 
Finally, since many CaS~~ergies, the 

have a source term only at high energy and are source-free at all lqwer 
equation reduces simply to the most familiar form of the age equation: 

. 
Vzq (r,7) - y = 0 

The similarity of this equation to that for the diffusion of heat should be.nqted. The 
quantity 7 Plays the role of time in the heat equation. Because of thrs It Is ca11ed 
the “Fermi age” in the present application. 

e variable but 

rather has the units of length squared. 
It is, however, not a time sixth of the 

It can be identified with on 
second moment of the neutron distribution and is thus one-sixth of the lnean square 
distance traveled by the neutron in being slowed down to energy E. 

1.6 The Selengut-Goertz,el Equation 
been given by A Very Useful approximate solution to the Boltzmann equation haTowing down in 

Selengut and Goertzel.3 Recognizing the basic difference between s e treated the 
hydrogen and slowing down in all other materials, these authors hav . 
processes separately. The Selengut-Goertzel equation, in its usual form, Is an ext.en- 

. due to Slowing sion of the diffusion equation in which that part of the source which 1s 
down in hydrogen is treated exactly while the remainder of the source is treated with 

the continuous slowing-down model. Any correlation between the deflection of the 

neutron and the degradation resulting from a collision with a hY drogen atom is 

ignored. The resulting equation has the form 

D V*+ (r,E) - Wuu8n + Nn,)qS(r,E) + s(~,E) 
+ v + lz* ,+$‘)~~m@‘) % = 0 

. 
The Selengut-Goertsel equation may be solved numerically by incorporatl’* into a 

multigroup formulation or by other numerical methods. It has Pro 
ved to be reason- 

ably convenient for a number of different kinds of problems. Note that the hydrogen 

scattering NH~,II appears added to the absorption NC,. 
ting hydrogen This method, while clearly approximate, nevertheless avoids trea. 

by continuous slowing-down theory and thus avoids the major aPP 
roxlmation incor- 

porated in the otherwise useful age theory. 
metho,j has met 

The Sclengut-Goertzel of processes of 
with surprising (and perhaps fortuitous) success in the description 
several types in water-moderated systems. More exact methods, 

which are much 
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more tedious, sometimes give results whic,h agree less w’ell with experiment than does 
the Selengut-Goertzel method. For this reason the Selengut-Goertzel method occupies 
a special position because of its unexpected accuracy. 

1.7 The Multigroup Equations 

Another very useful approach to the energy- and space-variation problem is obtained 
by approximating the continuous neutron energy spectrum by a finite number of 
energy groups. Within the dth group, which extends from Ei-1 to Ei, neutrons are 
assumed to diffuse according to the one-velocity diffusion equation until they have 
suffered a number of collisions (l/E) In (E&Ed, after which they move on to the 
next group. The group equation may be written in the form 

D v*+ (r) - Nu,+(r) + S(r) + s = 0 

Here Q is the slowing-down density. The source term S(r) includes neutrons intro- 
duced into the system from fission or by inelastic scattering. In the latter case, (T= 
includes inelastic scattering out of the group in question. Integrating this equation 
over the energy width of the ith group yields the multigroup equation 

Di Vz& (r) - Nn,i+i(r) -I- i%(r) + a’(r) - qO(r) = 0 

$(r) and $(r) are, respectively, p “out” and p “in,” the slowing-down densities at 
the low-energy and high-energy limits of the group. The constants Di and Nu,i 
are now averages over the width of the group, and the source S(r) is integrated over 
the group width. 

For a small number of groups, usually two or three, the equation is formulated as 
given above. In particular, for two groups 

D1 V% (r) - N(o.l i- bal)h(r) -I- L%(r) = 0 
D~v% (r) - Nu,+#&) + .EINu.l+l(r) = 0 

where the subscript 1 indicates the so-called “fast” neutron group and the subscript 2 
indicates the “thermal ” group. 

However, for a large number of groups (over 40 have been used on occasion) the 
multigroup equation is usually written as an equation for the slowing-down density, 
using the continuous slowing-down model 

%i (r) - 

where the bracketed quantities are again averages over the group width and where 
the slowing-down density, ai( and the source are integrated over the lethargy width 
of the group. The lethargy variable is defined as 

, 

The reference energy need not be chosen to be 10 Mev; however, it has become 
customary to do so. 

For the highest energy group (the lowest lethargy), i = 1, and if yz(r) and Sr(r) are 
known, then the equation for this group may be solved for @(I), provided that some 
relation among *r(r), F(r), and qz(r) is established. This value of @O(r) for the first 
group is then identified as the value of qz(r) for the second group, and the process is 
continued down through the remaining groups until the lowest energy (highest 
lethargy) group is reached. 

The relation between the p’s is usually assumed to be of the form 

qi = Wlrl’ + w2q” 
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where WI and wz are constants to be chosen. 
constants is discussed in Ref. 4. 

A number of ways of choosing these 

Care is required in choosing the cross sections for each medium in each group. The 

correct formulation for these constants can be obtained from the averaging process 
indicated above. For a very large number of groups the group constants are usually 
calculated from the cross-sectional curves directly. For two-group work, however, 
the constants needed are usually taken from experimental data where possible, using 
the relations 

Dz = L=Nu,z 
D, = 7Nb.1 + LU,,) 

where Lz is the thermal diffusion area and 7 is the Fermi age of neutrons entering the 
thermal energy group. 

Finally, it should be noted that the techniques of multigroup theory, while usually 
applied t-o the form of the diffusion equation discussed above, are not limited to this 
particular application and can be used with various other forms of the Boltzmann 
equation. In particular, the Selengut-Goertzel equation has been used, as has the 
form of the diffusion equation with a variable diffusion constant. 
the Laplacian term becomes 

In this latter case, 

div Di(r) grad +i(r) 

1.8 The Greuling or Diffusion Kernel Equation 

An alternative formulation of the group picture stems from the integral form of the 
one-velocity Boltzmann equation. This formulation is most simply illustrated by 
considering a point, isotropic, unit source of neutrons at position r,,. If the medium is 
infinite and nonabsorbing, then the solution of the one-velocity integral equation for 
the slowing-down density is 

pi(r) = Kl(r,ro) 

where K, is the point diffusion kernel and is defined as the probability that a neutron 
which is born at rO will be removed from the group by an elastic scattering collision 
at r. The point diffusion kernel is similar in its effect to the point transport kernel 
discussed earlier (see Art. 1.4) except for the change in definition of the units involved. 
The slowing-down density and the collision density $ are related by 

If the energy interval, Au, described by this equation for the slowing-down density 
is wide compared with the energy loss in one collision, so that the continuous slowing- 
down model applies, then the slowing-down density resulting from this first group 
may be used as a source for the next lower energy group of neutrons, for which the 
solution for the slowing-down density is immediately 

a(r) = / 
r, Kdr,r’)Kl(r’,rO) dr’ 

This process may be continued for any number of groups, the solution for the slowing- 
dow.n density for the nth group being merely the convolution of the 7~ slowing-down 
kernels which apply to the higher energy groups. 
similar result can be obtained. 

In an absorbing medium a very 
The solution for q,, as a convolution of kernels is 

valid for other geometric diffusion kernels provided that the material cross sections 
are independent of position in the medium. 

This particular integral form of the group equations uses the continuous 
down picture. 

slowing- 
Consequently, the Fermi age equation can be shown to be the limiting 

case of this group formulation as the number of groups goes to infinity. Also, as 
in the case of the space-independent integral equation, various forms of the kernels 
can be used for different physical models in order to give alternative, approximate 
approaches to the description of the energy and space variations of the neutron flux. 
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2 THE SPHERICAL HARMONICS METHOD AND THE 
DIFFUSION EQUATION 

. 
The one-velocity Boltzmann equation forms the basis for many calculations in 

engineering practice. The most common technique for treating this equation is the 
spherical harmonics method. In this article a number of approximations based 
upon this method will be discussed with emphasis on their relative validities in 
physical problems. 1 

2.1 The Spherical Harmonics Method 

Basically the spherical harmonics technique consists of expanding the source and 
flux distributions in spherical harmonics of the cosine of the angle between the direction 
&? and some principal coordinate direction. The source and flux distributions are 
then considered to be rotationally invariant with respect to this coordinate direction. 
If p is the cosine of the angle between the direction Jz and the reference coordinate, 
then the flux is given by 

where 

The source term is treated in a similar fashion. The quantity P,(p) is the Legendre 
polynomial of order m. 

The cross section o,(n,n’) is also expanded in harmonics of the cosine of the angle 
between the incident and the scattered particles. This series may then be converted 
into an expansion in the cosine of the direction angle p by means of the addition 
theorem for spherical harmonics. The scattering term in the one-velocity Boltamann 
equation then becomes 

00 

% 
c 

(2m + l)N~dJ~(d 
J ‘, PmG’)O,L) di*’ 

m=O 

J 1 
where usm = -l ~,(a. e’)P,(n . n’)d(a . n’) 

The spherical harmonics method then assumes that all terms containing harmonics 
higher than P,(p) contribute negligibly to the result. This approximation to the 
solution is known as the P, approximation. The resulting approximate equation is 
multiplied in turn by each spherical harmonic P%(p) and is integrated over -1 < 
p 5 1. Because of the orthogonality of the spherical harmonics, this results in a 
set of n + 1 first-order differential equations. 

2.2 The Diffusion Equation 

In the P, approximation it is assumed that, in the expansions, contributions from 
terms beyond the first two are negligible. It can be shown that this assumption 
implies that the cross section angular distribution can be expressed in the form 

u.(sz,n’) = A + B cos (n - n’) 

and that the medium involved is only weakly absorbing. Also, because the higher 
harmonics express transient effects near boundaries, the PI approximation assumes 
that the region in question is several mean free paths from any boundary. 

The two resulting equations can be combined into a single equation for the isotropic 
component of the flux. 
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Dv’+$ (r) - Z,+(r) + S(r) = 0 

6-11 

where DC--Lb 
3w - P) 

where fi is the average value of cos (a * a’). The source here has been assumed to bc 
isotropic. 

This equation is the so-called diffusion equation and is of particular use in reactor 
physics because it can be solved analytically for many geometries. It provides satis- 
factory accuracy as long as the conditions for validity of the approximations mentioned 
above are met. In particular this equation finds use in describing the distribution 
of flux of any monoenergetic neutron group within a large medium such as a reactor 
core. The diffusion equation is also often used as the basis of the derivation of the 
flux disadvantage factors within a unit cell of a heterogeneous react,or lattice. The 
validity of this last application is, however, open to question, since most lattice celis 
contain strongly absorbing material and because the regions involved are not large 
compared with a mean free path. Because of its convenience, however, the diffusion 
equation is very often used to derive a first approximation to these flux disadvantage 
factors. 

2.3 The PQ Approximation 

It can be shown that the P2 approximation yields the same differential equation as 
does the PI approximation. The only difference is that certain correction terms occur 
to the constants in the equation. In particular, the diffusion equation resulting 
from the PI approximation is 

. DV’+ (r) - L+(r) + S(r) = 0 

with 
m 1 

While this equation yields improved values of the constants, the generality of its 
application is not greatly improved and the remarks in the previous section apply. 
Again, the approximation is valid only for the case of weak absorption where 

2.4 The Pa Approximation 

If it is assumed that all terms beyond the fourth contribute negligibly to the result, 
a distinct improvement in the generality of the solution is obtained. In particular 
the equation which results for the flux is now of fourth order and has solutions contain- 
ing terms which affect the flux particularly in the region of boundaries. 

Experience has shown that the Pa approximation provides a much more accurate 
description of the neutron flux within a reactor lattice cell. Generally the P3 flux dis- 
tribution is entirely satisfactory within the fuel element and is fairly good in the sur- 
rounding moderator. Comparison with higher harmonics (PC, P,, etc.) has shown 
that in most cases of interest the Pa approximation is satisfactory and provides most 
of the needed improvement over diffusion theory. 

The Pa approximation involves the solution of large algebraic systems and is usually 
carried out on digital computing machines. 

It should be recognized that although the P, approximation effectively provides a 
correct description, for most physical cases, of the neutron flux distribution for a one- 
velocity group of neutrons, many cases of interest are not correctly described by such 
a one-velocity model. Because of its complexity the Pa approximation has not been 
widely applied to two-or-more-velocity approximations although some work has been 
done on a two-group approach.5 
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3 OTHER TECHNIQUES FOR TRANSPORT PROBLEMS 

In this section several techniqdes of a somewhat unconventional nature will be 
considered. Historically, the solutions to most reactor problems in neutron transport 
have been obtained with the methods which have been described in the previous 
sections. Recently, however, two suggestions have been made concerning other 
approaches to the above equations. These two ideas are the hemispherical harmonics 
method and the S, method. In addition, an entirely different technique of great 
general applicability has been developed. The Monte Carlo method, as it is called, 
may become important in the future for the solution of complex problems of all kinds 
if the abilities of computing machinery continue to increase at their present rapid rate. 

3.1 Hemispherical Harmonics 

The method of spherical harmonics, which has been discussed in some detail earlier, 
has proved of great use in many applications. However, the rate of convergence of 
the expansion in spherical harmonics is not known, and the success or failure of the 
method has been determined largely by numerical computations and by comparison 
with experiment. The complexity of solving the higher approximations in spherical 
harmonics has limited the use of the method, in most cases, to the Pa approximation. 
It would be desirable to have a method which would retain the advantages of the 
spherical harmonics method but which would converge more rapidly, thus yielding 
equivalent accuracy with less algebraic complexity. 

It has been suggested that in most cases of interest the majority of neutrons flow 
in the directions of the principal coordinate axes. That is, the boundaries between 
regions are often surfaces of constant radius r or displacement z. Consequently, 
the gradient of flux will often be directed perpendicularly across these boundaries. 
The spherical harmonics method, however, expands the flux in a series of harmonics 
containing some components which are largely in a direction parallel to the boundaries. 
Improved convergence might be obtained if an expansion were used which eliminated 
components of importance which were parallel to the boundary. This is what the 
hemispherical harmonics method attempts to do. 

Instead of a single expansion in P, the cosine of the angle between the velocity 
vector and the principal coordinate direction, the flux is expanded in two different 
ways. That part of the flux with p between -1 and 0 is expanded in harmonics of 
the variable (2~ + I), while that part of the flux with P between 0 and 1 is expanded in 
harmonics of the variable (2, - 1). In this way two complete expansions are derived, 
the sum of which represents the neutron flux as a function of angle at the space point 
in question. As with the spherical harmonics method, these expansions are trun- 
cated arbitrarily after a given number of terms to achieve an approximation. For 
consistency, the two expansions are cut off after the same number of terms. Because 
the functions involved are still Legendre polynomials, the approximations are called 
P,., for the case where each expansion is cut off after n + 1 terms. 

Although not much work using this approximation has appeared in print, it is 
expected to have considerably improved convergence characteristics, with a P2,2 
approximation yielding accuracy comparable to a PS approximation in the spherical 
harmonics method, but with considerably reduced algebraic complexity. Unfortu- 
nately, however, the hemispherical harmonic equations are not analytically solvable 
in cylindrical geometry. Because of the great interest in this type of configuration, 
however, numerical solution of the P “.,, equations will probably be attempted for this 
case in the near future. 

An additional improvement is to be expected from the hemispherical harmonics 
method in the treatment of black boundaries. Because the hemispherical harmonics 
do not contain flux components parallel to most boundaries, a more correct descrip- 
tion is to be expected in the vicinity of absorbing boundaries. 

The method of hemispherical harmonics is sometimes referred to as the method of 
Yvon.E 
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3.2 The S, Method 

The S, method of Carlson’ is still another approach to the solution of the steady- 
state Boltamann equation. It is usually applied to the one-velocity equations which 
are used in multigroup theory. However, it does not require the diffusion approxi- 
mation but is applied to the case where, for each energy group, the one-velocity Bolts- 
mann equation holds with but two restrictions. The source term is taken to be iso- 
tropic, and energy degradation is taken to be independent of the deflection angle of 
the scattered particle. 

The S, method then consists of approximating the flux as a function of direction, 
+(r+), by a series of straight-line segments 

where 

$(r M) = fi - e-1 3 +(r,rj) + .-f!iIL dr+-l) 
Pi - Pi-1 k - Pi-1 

Pi-1 5 P 5 Pi 
j=O,1,2 ,..., n 

The order of the approximation is characterized by the number of line segments n 
which is used. This approximation is then used to reduce the one-velocity Boltzmann 
equation to a set of n equations in the n + 1 variables +(r,pi). An additional equa- 
tion is obtained by setting P = -1 directly in the one-velocity Boltzmann equation. 

The resulting set of equations is then solved numerically for the fluxes, an initial 
guess for the sources having been made. The equations for the various energy groups 
are solved in order of decreasing energy, and a new approximation to the fission source 
is obtained. The process is continued until an acceptably small change is obtained 
between two successive source calculations. 

The S, method has been applied to time-dependent problems as well as to the 
steady-state problem outlined above. For the stationary case the anisotropic problem 
(which includes the correlation between scattering angle and energy degradation) 
has been solved for spherical geometry. 

The chief value of the S, method would appear to be its ease of adaptation to cal- 
culation on digital machines. It has been applied to a large number of varied prob- 
lems, chiefly at the Los Alamos Scientific Laboratory. 

One over-all comment is applicable to the S, method. Although it is usual to 
choose the n intervals in P as of equal size, it is possible to choose unequal intervals. 
For a given value of n the most efficient choice of intervals would appear to be that 
given by the Gaussian integration formula,* and it can be shown that this choice of 
Gaussian intervals will yield values for the isotropic flux exactly equal in accuracy to 
those obtained with the spherical harmonics approximation with the same n. (The 
angular distributions will, however, not be the same as given by the spherical harmonics 
method.) Therefore, it would appear that the S, method would be less efficient than 
the corresponding spherical harmonics approximation. However, it may have advan- 
tages in ease of application which would outweigh the reduced efficiency in convergence 
of the approximation. 

Sykes9 has reported a method using a double Gaussian integration. Such a tech- 
nique would appear to be a numerical equivalent of the hemispherical harmonics 
method of Yvon. 

3.3 The Monte Carlo Method 

A new technique, which is of a different nature from any discussed so far, is gaining 
importance for use in transport problems as more powerful calculating machines 
become available. This technique applies the statistical methods of random sampling 
to those physical and mathematical problems to which a probability analysis is 
applicable either directly or as an analogue. Because of the random-sampling 
approach, in which random numbers are actually used, the technique has acquired 
the name of the “Monte Carlo ” method. 

- 
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The history of a neutron in a chain reactor may be represented accurately as a 
sequence of statistical events. A cross section is, by definition, the probability that a 
neutron will suffer a collision in tl’aversing a given distance of material. Thus, a 
neutron may be introduced into a system at some random point with an energy chosen 
at random from the distribution of fission neutrons and with random orientation. 
Successive random selections are then made to determine, with appropriate dis- 
tributions of cross sections and other material constants, when and where the neutron 
is scattered or slowed down or absorbed. The process is continued until the neutron 
is captured or escapes from the system. The average characteristics of the system, 
such as neutron diffusion, aging, and attenuation, can then be obtained from a statis- 
tical average of many such histories. 

In general, the Monte Carlo method may be regarded as a technique for evaluating 
integrals or for solving integral or differential equations. Its chief virtue becomes 
evident for problems involving many dimensions in that the difficulty of solution 
increases roughly with the number of dimensions rather than with the nth power, 
where n is the number of dimensions, which is the case for a numerical technique such 
as Simpson’s rule. In practice, it turns out that Monte Carlo is superior to other 
numerical approaches if the dimensionality of the problem exceeds 4 or 5. 

With the Monte Carlo method, in principle, if the fundamental probabilities of the 
events are known (cross sections, etc.), any problem can be solved to any desired 
degree of accuracy. However, very time-consuming sampling and statistical cal- 
culations are often required. Consequently, Monte Carlo has been applied primarily 
to problems which have been prohibitively difficult to handle by other methods. In 
even these cases it may still be necessary to restrict the Monte Carlo analysis to 
certain aspects of the problem or to perform supplementary approximate calculations 
or experiments on aspects amenable to simpler treatment. 

It is illustrative to consider two problems to which the Monte Carlo method has 
been applied. The very different requirements of these problems are indicated by 
the following formula, which is derivable from the binomial probability distribution: 

Here N is the number of case histories necessary to calculate the probability P of a 
process to within the relative error c. The assumption is made that ordinary sampling 
procedures are used. 

Consider now a problem in reactor shielding, where it is desired to know the prob- 
ability of a given radiation penetrating a shield of some arbitrary composition and 
shape. For cases of engineerin, u interest, P may bc of the order of 10-n’, so that N is 
prohibitively large even though a 100 per cent error may be tolerable. Physically, 
the difficulty is that an attempt is being made to get statistical accuracy in the num- 
ber of radiations penetrating the shield. But a very large number of radiations 
must be followed in order to find just one which succeeds in getting all the way through. 
The situation is made still more difficult if the composition or geometry of the shield 
is complex, since individual particle histories then become tedious to calculate. A 
considerable amount of work has gone into obtaining improved mathematical tech- 
niques for reducing the number N of hist.ories which are required.10 Basically, these 
improvements deal with sampling methods which sample more efficiently the particles 
having a larger probability of penetrating the shield. The improvements also 
attempt to obtain more information from a given history or to perform a suitable 
transformation of the problem into a related one in which the probability of success P 
is considerably larger. 

As a second example, consider the calculation of the resonance escape probability 
in a heterogeneous lattice moderated with light water. Here each history is short, 
since only a small number of collisions are required to carry a neutron completely 
through the resonance region. Furthermore, the probability of success P is about 
0.9, so that lo3 to IO4 histories will determine the resonance escape probability to an 
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accuracy of 1 per cent. This problem has been carried out successfully using ordinary 
random sampling. I1 It should be noted that although this is a case peculiarly suited 
to Monte Carlo calculation, several hours of Univac time are required to complete a 
single computation of resonance escape. 

One further comment on the Monte Carlo method is appropriate. Suppose that a 
calculation is to be performed of the reactivity of a nuclear reactor. By random- 
sampling techniques it is, in principle, possible to determine the average number of 
neutrons produced by each neutron introduced into the system (that is, the reactivity). 
But the spatial and energy distributions of the neutrons will not be determined accu- 
rately by this calculation. A very much larger number of histories would have to be 
followed in order to determine, to satisfactory accuracy, the flux of neutrons of each 
energy at each point in the reactor. On the other hand, an analytical or conventional 
numerical solution of the Boltzmann equa.tion will give not only the over-all char- 
acteristics of the system but the distributions of the neutron flux. This is because, 
in the analytical case, the over-all characteristics are computed from the solutions 
for the fluxes. From this comparison it may be seen that the Monte Carlo method 
is useful primarily where the desired results are a limited number of specific system 
characteristics rather than the complete solutions for the system. 

The present time-consuming Monte Carlo method wil1, in the future, become prac- 
tical as better computing machines develop and as improved sampling techniques 
provide greater calculational efficiency. With the rising cost of experiments and with 
the inevitable increase in the complexity of engineering nuclear systems, the Monte 
Carlo method can be expected to be brought increasingly into use. This will be 
true even though the first wave of enthusiasm for the method is now over and the 
practical difficulties are clearly realized. 

4 THE TREATMENT OF BOUNDARIES IN NEUTRON TRANSPORT 
. 

Once solutions have been obtained for a specific material by any of the analytical 
methods discussed above, it is necessary to be able to join solutions for different 
media and to include geometrical restrictions on the size of the system. Although 
very simple methods can be used to achieve these definitions of the geometrical 
problem, there are more subtle techniques which can materially improve the accuracy 
of a calculation. 

4.1 Simple Boundary Conditions 

The fundamental condition for matching solutions across a boundary between 
regions is that of physibal continuity. In particular, for the Boltzmann equation 
this condition may be stated that the flux, +(v,Q,r), must be continuous across a 
boundary for all ja and ZJ. For the more practical reductions of the Boltamann 
equation, this condition extends directly. Consider, as an illustration, the spherical 
harmonics equations. The condition of continuity requires that the components of 
the flux, into which the total flux has been expanded, shall each be continuous across 
a boundary. In the P, and Pz approximations, the one-velocity Boltzmann equation 
reduces to two first-order differential equations for the flux components $0(r) and 
h(r), where 

i 

1 
4dr) = --1 dw)PmG) dp 

The &,(r) component is merely the integrated isotropic flux, since P,(p) is a constant, 
independent of p. Similarly, since P,(p) is equal to II, the &(r) component of the 
flux is directly interpretable as the net neutron current in the r direction. Con- 
sequently, the boundary conditions for the spherical harmonics method in the diffusion 
approximation amount to requiring continuity of flux and neutron current across a 
boundary. In practice, it is sufficient for criticality calculations to reduce these two 
conditions to requiring that the diffusion constant times the logarithmic derivative of 
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the flux 
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be continuous across an interface. 
Of course, the condition of continuity of flux and current (or of higher components 

of the flux in other approximations than the diffusion approximation) assumes that 
the interface is passive. In the event of an active interface, which may be either an 
absorber of neutrons or a source, an obvious conservation relation replaces the above 
continuity conditions. 

4.2 Extrapolated End Points 

Special treatment is required for the case of a black boundary or its equivalent, a 
boundary with an infinite region of vacuum. The former case may arise in the 
treatment of strongly absorbing media (such as control rods), and the latter may arise 
during the treatment of bare reactors where the active lattice has an outer boundary 
in common with a region assumed to be of infinite extent and which has the properties 
of a vacuum. The obvious boundary condition which may.be imposed is that the 
flux shall go to zero at the boundary of such media. However, in the adjoining active 
region the flux does not physically go to zero at the boundary, since there will be a 
streaming of neutrons toward the infinite sink represented by the black or vacuum 
region. The solution to this seeming paradox has been obtained, in practice, from 
an examination of the desired quantities in the finished calculation and takes the 
form of the so-called extrapolated end point. 

What is desired in calculations of criticality and in most flux distributions is a 
correct treatment of flux at relatively large distances from a boundary. In such 
regions, the transient terms in the solution to the equations will have disappeared and 
only the asymptotic solutions will remain. It would be desirable, thus, to require 
that the boundary condition imposed produce a correct asymptotic flux distribution. 

In the commonly used diffusion approximation, the solution to the flux equation 
contains a limited number of transient terms and gives a physically correct description 
only at points far from boundaries. Put another way, the diffusion approximation 
can be shown to be the asymptotic solution of the transport equation in weakly 
absorbing media and away from boundaries. Consequently, it is desired to achieve a 
boundary condition such that the diffusion-theory solution will approach the correct 
transport solution at interior points in the region. Extrapolation of the correct 
asymptotic or diffusion solutions through the boundary and into the adjoining medium 
shows that if the flux is required to go to zero at this extrapolated boundary, then a 
correct asymptotic description will be obtained. This treatment, however, will not 
yield a correct description of the neutron flux in the vicinity of the boundary. 

If the physically meaningful boundary condition is imposed that the current return- 
ing from the black or vacuum region should be zero, then solutions may be obtained 
which yield quantitative estimates of the size of the extrapolation distance which is 
to be used with a zero-flux boundary condition. A linear extrapolation of the diffu- 
sion solutions shows that, for a plane boundary, the extrapolation distance is %A,,. 
However, consideration of more accurate approximations to the Boltzmann equation 
and its solutions shows that a more correct extrapolation distance for the asymptotic 
solution is 0.71X1,. The quantity XI, is the transport mean free path of the active 
medium and is equal to three times the diffusion constant D. Thus for a bare reactor, 
the flux is required to go to zero at an extrapolated boundary which is 0.71X,, into the 
adjoining vacuum medium. 

The above values for the extrapolation distance apply for a plane boundary and 
for the case of small capture and isotropic scattering. Similar results for plane 
boundaries, with other conditions of capture or scattering, are given in Refs. 12. For 
most cases, however, the value of 0.71&, is adequate. 

For curved boundaries the extrapolation distance varies as a function of the radius 
of curvature. For a black sphere, the extrapolation distance increases monotonically 
to 4kXc, in diffusion theory, as the radius goes to zero. This is physically because a 
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restricted black region (such as a sphere) depresses the flux in the adjoining medium 
less than a boundary which is very large (such as a plane). 

The use of diffusion theory with the appropriate extrapolation distances for the 
boundaries involved will give rigorously correct values for the flux a few mean free 
paths from the boundary. For a very large class of cases, this treatment will yield 
satisfactory accuracy. 

4.3 Serber-Wilson Boundary 

Although the Serber-Wilson method is a technique for performing criticality cal- 
culations, it is included in this section because it is primarily a special case of the 
boundary conditions to be applied to transport problems. The Serber-Wilson method 
has been applied to the calculation of small, reflected reactors with considerable 
success.13 Although this has been its major use, it has also been applied to other 
problems, notably the calculation of the thermal flux distribution in a unit lattice 
cell of a heterogeneous reactor.i4 

The Serber-Wilson method is primarily for one-velocity problems and deals with the 
asymptotic solutions to the transport equation. The asymptotic forms of the solu- 
tions are assumed in each of the media concerned, and special boundary conditions 
are used to assemble these individual solutions into a single description of the physical 
system. Because conservation of neutrons is implied by the continuity of net cur- 
rent across a boundary, this condition is retained from the usual diffusion-theory 
approach. However, for the simplest case of a spherical reactor with an infinite 
reflector, the usual continuity of flux is not required, since, with a true solution to 
the transport equations, the asymptotic or diffusion solutions are not continuous at 
the boundary. For this simple example, only one additional equation is needed to 
replace the discarded flux continuity condition. The so-called “Serber condition” 
which is used requires that the one-velocity Boltsmann equation be satisfied exactly 
at the center of symmetry of ,the system, which is the origin in this case. This con- 
dition then allows the system to be completely described. 

For this simple case, with a single infinite or finite reflector, numerical results are 
easy to obtain and are given in Ref. 13 in convenient form for the solution of problems. 

For systems involving more than one intermediate boundary it is necessary to 
obtain such afi additional equation for each boundary. This is accomplished by 
satisfying the Serber condition “in detail.” In the simple spherical case, satisfaction 
of the Serber condition in detail results in the so-called “Wilson conditions,” which 
require that the flux in the one-velocity Boltsmann equation +(r,p) be continuous at 
all boundaries for the value p = - 1. These radially inward fluxes are, however, to be 
computed as if the two adjoining media were infinite in extent. 

Although the Serber-Wilson method has been useful for calculation of reflected 
systems, it has not generally been extended to the many-velocity case. Consequently, 
it can be helpful only where the nature of the system makes a one-velocity approach a 
reasonable approximation to reality. 

4.4 Albedo 

The albedo is a concept which has been of use for those systems where one-velocity 
diffusion theory is adequate. It is simply defined as the ratio of the current density 
out of the medium in question to the current density into the medium in question. 
The albedo is thus the fraction of neutrons which are scattered back across the bound- 
ary after any number of collisions and is, to this extent, a “reflection” coefficient. 
For the diffusion-theory case, the albedo can be shown to be a property of the reflecting 
medium only and, for this reason, allows certain simplifications to be made in the 
treatment of boundaries between a reactor core and a reflector. Inserting the defini- 
tions of neutron current into the definition of the albedo gives immediately 

Albedo = p = 1 + W/+)(d+ldx) 
1 - W/+)(Wdx) 
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Because of the required continuity of flux and current in diffusion theory, the quanti- 
ties 4 and D d+/dx may be chosen for either medium. For a finite slab reflector the 
solutions of the diffusion equat,ion can be inserted directly to give 

P= 
1 - 2xD coth ~a 

1 + 2xD coth xa 

where a is the slab thickness, including the extrapolation distance, and x is the recip- 
rocal of the diffusion length. For an infinite slab reflector this becomes 

1 - 2xD p=----..- 
1 + 2x0 

It will be noted that the albedo of a finite slab is less than that for an infinite slab 
because of the loss of neutrons by escape from the outer boundary. When the 
reflector is more than about two diffusion lengths thick, a finite reflector is essentially 
indistinguishable from an infinite reflector. 

For spherical boundaries the expression for the albedo will be different, with the 
albedo of a medium being less when it surrounds a spherical source. This is because 
neutrons which get into the reflector an appreciable distance have a smaller solid 
angle into which they can be scattered and still return to the source region. Thus the 
albedo will depend both on the properties of the medium and on its geometrical shape. 
For other shapes see Art. 2.3 of Sec. 6-2. 

A good reflecting medium will have a diffusion coefficient small compared with its 
diffusion length, as may be seen from the above expressions. The albedo is 90 per 
cent or over for infinite slabs of good reflecting materials such as heavy water or 
graphite. Because of its absorption, an infinite, light-water slab has an albedo of 
only 0.821 for thermal neutrons. 

The albedo can be used to replace other forms of boundary conditions. For a 
plane boundary 

1 a 1 1-P --= [ 1 -- -- + dx 20 1+8 
and the extrapolation distance at the boundary is 

d = 0.71x,, z II 1 
For the case of a nonscattering absorber or of vacuum, the albedo is zero and this 
equation reduces to the extrapolated end point treated earlier. 

While it is a conceptually pleasing quantity, the albedo is limited in its reactor 
applications to cases where the one-velocity diffusion picture is adequate. Because 
of this, it has not found wide application to the more recent reactor systems, par- 
ticularly those containing light water where important boundary effects like the rise 
in thermal flux at a core-reflector interface can be described only on a multivelocity 
basis. The albedo has, however, been useful in shielding work.i6 

6 REACTOR EQUATIONS 

Many problems in reactor engineering may be solved as transport theory problems 
directly. That is, they take no cognizance of the multiplying nature of the system. 
However, it is necessary in performing criticality calculations to include this important 
characteristic. The modification and extension of the methods of transport theory 
to include these problems will be treated in this section, along with a valuable tool for 
predicting the effects of small disturbances on a chain-reacting system. 

6.1 The Reactor Equations and Their Relation to Transport Theory 

The methods of transport theory have always included a provision for an arbitrary 
source of neutrons. In the reactor equations, this source is assumed to come from 
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neutrons born in fission. lSxterna1 sources are normally not included in critical 
systems, although they are often used during the approach to critical. In this section, 
however, only systems which are critical will be discussed, so that no provision for 
an external neutron source will be made. 

In any reactor, the number of neutrons introduced into the system is proportional 
to the number of fissions, which, in turn, is proportional to the flux of neutrons which 
produce fission. For a uniform thermal reactor, then, the source of neutrons will bc 
proportional to the thermal flux at each point. 

Consider the simple case of a one-group diffusion equation. The source of thermal 
neutrons will be proportional to the flux, the factor of proportionality being the absorp- 
tion cross section times the number of neutrons produced for each one absorbed at the 
point in question, or k,. The one-group reactor diffusion equation is then 

D v*4 (r) + Nu,(~, - l)+(r) = 0 

As has been discussed earlier, however, the one-group picture does not provide an 
adequate description for most engineering reactors. In a two-group picture, the 
source of fast neutrons is proportional to the thermal-neutron flux, the constant of 
proportionality being equal to (k,/p)No,z. Here p is the resonance escape proba- 
bility. Assuming that rescmance capture occurs between the fast and slow groups, 
the source of thermal neutrons is proportional to the fast flux with a constant of 
proportionality of pN&a,l. The quantity Ntlo,l is defined as the macroscopic cross 
section for the removal of a fast neutron from the fast group by slowing down into 
the thermal group. Hence, the two-group reactor equations become 

DI V% (r). - N(ua, + b,dh(r) + 2 Nuddr) = 0 

Dzv24s(r) - Nuu242(r) + pNLu,,4l(r) = 0 

The one-group equation and the homogeneous part of the two-group equations 
may be written in the form of a wave equation: 

. 
v*4(r) + @4(r) = 0 

Solutions of this equation for various geometries are well known.16 Use of this 
homogeneous solution in the two-group equations leads directly to 

-[D,@ + N(m + &7r1)141 + $ Nue242 = 0 

pNhuz141 - (DzB2 + Nu,z)4n = 0 

where the constant B* is taken to be the same for both groups. By Cramer’s rule, 
the condition for a nontrival solution leads immediately to the two-group critical 
equation (for small absorption in the fast group) 

k, = (1 + ~B2)(1 + L”P) 

The corresponding one-group equation is 

k, = 1 + M?B* 

In both of the above critical equations the following relations have been used: 

Dl DZ 

7=K- L2=Na,f 
W=L2f7 

lUS1 

Obviously, almost any transport theory approach can be used to produce solutions 
to the flux equations and to give a criticality equation. The approach can be made 
either through the integrodifferential formulations or through the integral equation 
formulations of the Boltzmann equation. One further form of the critical equation is 
worth noting here. On the basis of age theory (or from the integral equations, using 
Fermi age or Gaussian kernels) the rigorous critical equation can be shown to be (no 
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“&oup” approximations having been made) 

c 
k-e-B+ = 1 + L2B2 

For a large reactor where the buckling Bz is small, all the above equations can be 
reduced to the form of the one-group equation 

k co = 1 + WBz 

In general, the remarks concerning the validity of the diffusion equation which 
were made earlier are still pertinent for criticality work. The diffusion equation is 
only an asymptotic solution of the Boltsmann equation. It will give correct results 
for a bare reactor if the flux is required to go to zero at a correctly chosen extrapolated 
boundary. Since the solutions for the various energy groups of neutrons must be 
required to go to zero at the same boundary, the above equations assume that the 
extrapolation distance is independent of neutron energy. This assumption is adequate 
for large reactors but may cause difficulty for the case of reactors which are not very 
Iarge compared with the extrapolation distance. 

Finally, it should be noted that the constant Bz, as a property of a medium, is 
called the “material buckling.” However, as a solution to the wave equation for a 
given geometry, this constant is referred to as the “geometrical buckling.” In order 
that a reactor be just critical and that the properties of the medium be just that 
required by the geometry, the material buckling and the geometric buckling must be 
equal. In this particular case, they are both referred to as the “critical buckling.” 
This condition forms a simple, alternative statement of the criticality equation 

B’crit = B,’ = B,Z 

6.2 The Adjoint Equation 

Although it is a purely mathematical artifice, the concept of an adjoint flux is very 
useful in evaluating the effect of small disturbances on a reactor by means of per- 
turbation theory. The adjoint equations are usually based upon the group reactor 
equations discussed above. If the group fluxes are represented by the vector +, 
then the reactor equations may be written in the matrix notation 

M+ = 0 

The adjoint of the matrix M may be formed by taking the complex conjugate of each 
matrix element and interchanging rows and columns. The resulting adjoint matrix 
M* will then have eigenfunctions analogous to the neutron flux vector +. These 
eigenfunctions are defined by an eigenvalue equation similar to the reactor equation 

M*+* = 0 

The eigenfunctions of the adjoint matrix are referred to as the “adjoint fluxes.” The 
equations for the two-group adjoint fluxes are thus 

DI v%*(r) - Nh + bu.l)~l*(r) + pNEla.l42*(r) = 0 

D2 v242*(r) - Nua242*(r) + 5 No.&*(r) = 0 

These equations may be solved in a manner entirely similar to that employed for the 
neutron flux eauations. The resulting adjoint fluxes, however, have little direct 
physical signifi&nce. 

- - 

For reactor work, the most important property of the adjoint fluxes and of the 
adjoint matrix may be shown to be (coming directly from the definition of a Hermitian 
conjugate or adjoint) 

/v +k*M+k dv = Iv +eM*+k* dV 
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where +k and I&* are two particular eigenfunctions of their respective eigenvalue 
equations. 

This property makes possible the derivation of perturbation theory. 

6.3 Perturbation Theory 

Let the reactor equation matrix be perturbed by some small change AM in such a 
way that the reactor is just maintained critical. The reactor equation under this 
new condition is then 

(M + AM)+’ = 0 

where the fluxes g’ are those corresponding to the perturbed condition. Multiplying 
this equation by +*, subtracting the product of the perturbed neutron flux and the 
adjoint equation, and integrating the result over the volume of the reactor, the result is 

Iv +*M+’ dV - /v +‘M*+* dV + Iv $* AM +’ dV = 0 

The first two terms are equal in magnitude because of the properties of the adjoint 
fluxes and the adjoint matrix. Consequently, the perturbation equation is 

J v +*AM +’ dV = 0 

This equation provides the basis for evaluating the changes which must be made, for 
example, in a control-rod setting to offset a change in some other reactor parameter. 
In essence, the perturbation relation gives the relative weighting of small effects in 
the reactor. If this small effect does not change the neutron flux appreciably, the 
unperturbed flux + may be used as an approximation to the perturbed flux. The 
relative weighting of perturbations to a reactor may thus be stated to be the integral 
of the product of the adjoint flux times the neutron flux over the region of the per- 
turbation,‘or 

+*AM+.dV = 0 

For the special case of a one-group approximation, the reactor matrix M is self- 
adjoint, and perturbations are to be weighted as the square of the neutron flux, except 
for changes in the diffusion coefficient. These latter are to be weighted as the square 
of the flux gradient. By the same approach it can be shown that if the reactor is 
large (or k - 1 small enough), regions of different buckling in a reactor are to be 
weighted as the square of the flux integrated over each region of constant buckling. 

6 THE FOUR-FACTOR FORMULA 

The four-factor formula provides a very useful conceptional approach to neutron 
multiplication in a chain-reacting system. Standard formulas for calculation of the 
four quantities involved are well known and are presented in Art. 9 of Sec. 6-2. 
It is, however, necessary to realize that this physical picture is, in many cases, only a 
rough approximation, so that the formulas involved are sometimes inadequate for 
cases of engineering interest. In this section the four-factor formula will be discussed 
from the point of view of its validity and its application to cases where the usual 
approximations fail. 

6.1 The Physical Concept 

In the four-factor formula the physical processes within a reactor are pictured as 
follows: 

1. All fissions in the primary fuel are caused by neutrons of thermal energy. 
2. The neutrons produced in fission are all fast. The number of neutrons entering 

the resonance absorption region is equal to the number 7 of fast neutrons produced 
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per thermal absorption in fuel, times the fast fission factor e. The fast fission factor 
is the number of fast neutrons slowed down below the fast fission threshold per fast 
neutron introduced into the system. 

3. Of the neutrons entering the resonance region, a fraction p escapes resonance 
absorption. 

4. The resulting thermal neutrons are then absorbed in fuel with a probability f, 
as opposed to their being absorbed in all other materials. 

This neutron cycle was conceived primarily for use in graphite or heavy-water 
reactors and is very often adequate in reactors of these types. The neutron mul- 
tiplication k, for an infinite region of the lattice in question is the product of these 
four factors 

and is a useful quantity as a first step in proceeding to calculations of finite-sized 
reactors. 

6.2 The Fast Effect 

A fraction of the neutrons produced in fission are at energies sufficiently high to 
produce fission in materials such as Uz38 or Thz3*. These neutrons will also be able 
to produce fission in isotopes such as U 135, but the relative effect of these latter mate- 
rials will be small, since their relative abundance in low enrichment reactors is small 
and since their microscopic fission cross sections at high energies are only comparable 
to the cross sections of other materials. 

In the conventional formulas for the fast effect, it is assumed that a fission neutron 
will produce fissions only in the lump of fuel in which it is born. If it escapes from 
this lump without interaction, it is considered to be lost from the high-energy region. 
Corrections may be made for neutrons which leave a lump but are immediately 
scattered back into it. This formulation of the fast effect has been developed exten- 
sively for a number of fuel geometries. 

As long as a fission neutron has a negligible chance of striking some lump of fuel 
besides the one in which it was born, the traditional approach to the fast effect holds 
satisfactorily. However, some reactors, notably those moderated with light water, 
have their fuel elements very close together, so that a very significant number of 
fissions in the high-energy region is produced by neutrons from one lump entering an 
adjacent lump. Where this effect is small, a correction may be derived for the inter- 
action fast effect and may be used to modify the conventional approach. However, 
in many reactors of engineering interest the fuel lumps themselves are small enough 
and close enough together that the majority of the fast effect is produced by this 
interaction type of phenomenon. In this case, it has been found more successful to 
approach the fast effect from another standpoint. 

The majority of the fast effect in a close-packed lattice is essentially that effect 
which would have been produced in a homogeneous mixture of fuel and moderator 
of the same average composition. Hence, a homogeneous fast-effect calculation can 
be made and can then be corrected for the slight increase in fast effect due to the heter- 
ogeneity of the lattice. This approximation has been found to give good agreement 
with measurements.‘r Fast-effect mcasurcmcnts for light-water uranium lattices 
are much larger than would be expected from the conventional formulas.rs 

6.3 Resonance Escape Probability 

The normal formulation of the resonance escape probability p depends almost 
entirely upon the evaluation of an effective absorption cross section for the fuel in 
its actual geometrical configuration. This effective cross section has been measured 
for several specific cases,r9 and these measurements have given rise to the empirical 
surface-and-mass formula conventionally used in such calculations. This empirical 
approach to the calculation of resonance absorption relies upon a formula which 
breaks the effective resonance cross section into a strongly self-shielded surface term 
and a weakly self-shielded volume term. Unfortunately, the problem of arriving 
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at t,he constants in this formula, starting from fundamental cross sections, is very 
difficult because of the very large self-shielding of the absorption resonances. 

Care must be taken in the use of the effective resonance integral formulation for 
resonance escape. If epithermal absorption in II236 is neglected, then a compensating 
correction must be made in the epithermal absorption properties used for U*a8. In 
particular, the relative cross sections used for these two isotopes in the thermal region 
will adequately account for the competition between the l/v portions of their absorp- 
tion cross sections even in the resonance region. Thus, as a minimum, if epithermal 
fission in II236 is ignored, the l/v component of the lP8 cross section should be sub- 
tracted from the resonance integral. This treatment still ignores absorption in the 
II235 resonances which are, however, not very pronounced. Note, however, that when 
explicit account is taken of epithermal U 235 absorption, the l/v correction to the II238 
mass absorption must not be made. 

For the case of a close-packed lattice, where a neutron has a reasonable probability 
of traveling from one fuel lump to another fuel lump without encountering a moderator 
atom, the concept of surface absorption is subject to correction. In these lattices, 
the uranium atoms at the surface of a fuel lump are partially shielded by the uranium 
atoms in adjoining fuel lumps. That is, the neutron spectrum impinging on the lump 
is not that produced by full moderation but is partially depressed in the energy region 
of the strong absorption resonances by the presence of other lumps. Such an inter- 
act,ion correction,20 similar in mathematical formulation to the correction for inter- 
action fast effect, should be applied to all lattices which are sufficiently tightly packed. 

The justification for the use of an empirical formula for resonance absorption is 
simply that for a heterogeneous lattice there is no other adequate way of evaluating 
such a quantity. In a difficult geometry the mathematical complexity is just too 
great. Some progress is being made, however, with the use of high-speed digital 
computers in the calculation of resonance escape from fundamental cross sections by 
use of the Monte Carlo technique.” 

It is to be hoped that a sound theoretical basis for investigating resonance escape 
in geometries of engineering interest will result from this work. It has already been 
reported*l that an energy-dependent cell calculation, using Selengut-Goertzel theory 
in the moderator and an appropriate boundary condition at the surface of the fuel 
rod, gives excellent agreement with the results of the Monte Carlo calculation. With 
the aid of digital computers such an approach may well provide the engineering tool 
that is needed. 

6.4 Thermal Utilization 

The fraction of thermal neutrons captured in fuel material (usually uranium) is 
called the thermal utilization. Calculations of the thermal utilization by conventional 
methods are approximate chicfly because of the use of inadequate methods for com- 
puting thermal neutron flux distributions and because of the approximate nature of 
the description of the energy distribution of thermal neutrons. 

In many cases diffusion-theory formulas are used to calculate the disadvantage 
factors with which to weight cross sections. The disadvantage factor is an expression 
of the relative weighted average fluxes in the different materials and is dependent 
essentially upon the ability to calculate correctly the detailed thermal flux distribution 
within the reactor lattice. For many cases of interest, diffusion theory will not give 
this flux distribution to adequate accuracy. Various other approaches have been 
used to obtain adequately correct disadvantage factors. In particular, the P, spherical 
harmonics approach has been found to be extremely useful22 The Serber-Wilson 
technique has also been used for lattice calculations.i4 This method appears t.o yield 
improvements over diffusion t,heory but it is not expected to yield as accurate resu1t.s 
as it dots in criticality calculations because of the much greater importance of higher 
order terms in the solutions for the flux in a reactor lattice cell. 

The second difficulty with calculations of the thermal utilization arises from the 
energy distribution of thermal neutrons. To begin with, this distribution is affected 
by moderator temperature and by the absorption in the lattice. If all cross sections 
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varied with energy in the same way (usually l/v), these spectrum effects onfwould be 
relatively minor. However, the cross sections of many fuel materials are decidedly 
not l/v and, to this extent, provide a need for the calculation of the neutron flux 
spectrum in some detail. This is particularly important for reactors containing 
appreciable amounts of plutonium because of the pronounced resonance in the cross 
sections of this material just above the thermal-energy region. For such materials, 
in order to choose cross sections correctly, it is necessary to average the energy- 
dependent cross-section curves over the neutron distribution. 

The calculation of thermal-neutron spectra is exceedingly complex because of the 
effect of molecular binding on the scattering atoms. To date most calculations have 
dealt with gaseous moderators and no adequate treatment is available for the cases 
of real interest. Methods for getting a temperature characteristic of some equivalent 
Maxwellian distributidn are often used. This effective temperature problem is dis- 
cussed in Art. 7, Special Reactor Problems. 

A further complication in the determination of neutron spectra for use in thermal 
utilization calculations is the fact that the spectrum is not constant throughout the 
lattice but will be of somewhat higher energy (usually referred to as “hardened”) in 
the regions of low moderation and high absorption. Both for the choice of cross 
sections and for the calculation of the flux distribution, it is the neutron spectrum 
locally incident upon the atoms in question that is desired. 
ideally, to know the spectrum at each point in the lattice. 

Hence, it is necessary, 
Calculations of these 

hardening effects have been made, but generally the variations of the neutron spec- 
trum throughout a lattice are not of first-order importance and are usually neglected 
in reactor calculations, except for reactors of unusual type. 

6.6 Fast Neutrons per Thermal Absorption 

The calculation of the number of fast neutrons produced per thermal neutron 
absorbed in fuel is usually straightforward. It is made complex only by the fact that 
the ratio of capture to fission in fissionable materials varies slightly with energy. 
Thus, 7 is somewhat dependent upon the neutron spectrum. For materials other 
than plutonium this variation is relatively minor. For plutonium the presence of 
the 0.3 ev resonance, with its accompanying change in the value of capture-to-fission, 
again demands a considerable knowledge of the thermal neutron spectrum in order 
to obtain a satisfactory value for q. The value of 7 for Puz3$, for example, is given as 
2.03 at 2,200-m/set neutron velocity.23 However, because 7 is lower in the large 
resonance at 0.3 ev, the value of 7 for Pu2z9 . m a typical power reactor will be about 
1.85. 

6.6 Inadequacies in the Formulation 

The above discussion has primarily involved improved methods for calculating the 
various components of the four-factor formula. It is important to realize, however, 
that the four-factor formula itself contains some important inadequacies arising 
directly from the physical picture involved. To begin with, the fast effect will 
probably be dependent upon reactor size for small, close-packed reactors.. The fast 
neutron leakage correction which is made to k, thus probably does not adequately 
give the effect on k, caused by the loss of very fast neutrons. 
should be relatively minor. 

This effect, however, 

The major inadequacy in the four-factor formula is the omission of nonthermal 
fissions. In many reactors an appreciable fraction of the fissions is produced by 
neutrons of epithermal energies. This will be particularly true in close-packed light- 
water lattices and is even true to some extent in the more diffuse graphite or heavy- 
water lattices. It should be noted, however, that the addition of resonance or epi- 
thermal fission terms to the conventional reactor formulations must be accompanied 
by associated corrections to resonance absorption in V3* (Art. 6.3). For reactors 
containing a small percentage of epithermal fission, the inclusion of resonance fission 
will cause relatively minor changes in calculated reactor characteristics. However, 
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if epithermal fissions are a significant fraction of the total number of fissions, then the 
conversion ratio and the reactivity may be appreciably affected by the different com- 
petition between materials in the epithermal and resonance regions and the fact that 
the epithermal value of r) for IJ2z5 (and for the plutonium isotopes as well) is much less 
favorable. 

7 SPECIAL REACTOR PROBLEMS 

In the application of many of the methods discussed in this handbook there are 
special effects which may have important consequences in actual reactor operation. 
A few of these effects will be discussed in this section in an effort to provide a botter 
understanding of the behavior of the nuclear systems involved. 

7.1 Thermal Spectrum Effects 

In many reactor calculations the low-energy neutrons are treated as a single energy 
group of thermal neutrons. Cross sections for this group must be obtained by averag- 
ing cross St?ctiOhS over the thermal-energy spectrum in order to arrive at physically 
significant results. However, in such a treatment of the thermal group it is usually 
necessary to take the characteristic temperature of the neutron distribution as that 
of the moderator molecules with which the neutrons are in energy equilibrium. For 
fairly dilute systems which are geometrically homogeneous this approximation is 
entirely adequate. There are important cases where this treatment fails, however. 
In heterogeneous geometries, where the lumps of fuel are of appreciable size compared 
with the mean free path of a neutron within the lump, the effective neutron spectrum 
impinging on the fuel atoms varies with position. The neutrons at lower energies 
are more strongly absorbed, with the result that the remaining spectrum is composed 
of neutrons with a higher effective “temperature.” This phenomenon is usually 
described as “absorption hardening” and may be of importance in describing the 
characteristics of heterogeneous reactors with large fuel elements. However, the 
present trend to-ward small fuel elements (for engineering reasons) will avoid some 
of the corrections due to this effect. Of course, clumped, small fuel elements (for 
example, in a water-graphite or sodium-graphite reactor) will again exhibit appreci- 
able neutron spectral hardening in the absorption in the fuel. 

Perhaps a more important aspect of the absorption hardening problem arises in 
both heterogeneous and homogeneous reactor lattices which contain strong thermal 
absorption. This applies particularly to light-water lattices, where the relative 
amount of thermal absorption is high because of the large amount of fuel present. 
In these cases the absorption hardening effect is a characteristic of the entire lattice 
rather than of a restricted geometrical region. The increase in the effective tempera- 
ture of neutrons for a homogeneous reactor moderated with gaseous hydrogen has 
been studied by Wigner and Wilkins24 and for a reactor with a moderator of heavy 
elements by Wilkins.25 A useful approximation to the results of these calculations 
has been suggested by Cohenzs, who found that the results were roughly of the form 

ii - = 1.128 + 1.36 ‘$ 
VkT d 

where B = average velocity of hardened “Maxwellian” 
VkT = velocity corresponding to thermal temperature 

z,~T = absorption cross section at VkT (assumed to be -l/v) 
Ez, = scattering properties of the medium (assumed independent of velocity) 

The resulting aTerage velocity may then be used to obtain an effective kT for use in 
the usual cross section averaging techniques. This empirical formula has been 
checked roughly by the work of various esperimenters. More recent work has been 
concentrated on treating the problem of nongaseous moderators.27 To date results 
of engineering significance have not been achieved for liquid moderators. 
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7.2 Self-absorbed Cross Sections 

The depression in neutron flux in the region of k high-absorption cross section has 
been discussed elsewhere. One aspect of this problem, however, deserves special 
mention. In the calculation of thermal utilization in a heterogeneous reactor the 
various absorption cross sections are weighted by their geometrical average fluxes 
to take into account the depression of the flux, for example, in a fuel rod. The 
effective cross section used may be written (where +i is the average flux in material i) 

c 
WU)i 4i 

2 
i 

eff = 

c 
4i 

i 

In many calculations, however, it is inconvenient to perform such a space-wise flux 
weighting as a part of reactivity calculations. This is particularly true in multigroup 
work. Consequently, it is often desirable to regroup the above expression: 
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The quantity 2,/f may be thought of as the effective absorption cross section in a 
homogeneous material having the same over-all nuclear properties as the actual 
heterogeneous region under consideration. The cross section a,ffi is often referred 
to as self-shielded or self-absorbed. 

An excellent example of this kind of thinking comes in the conventional treatment 
of resonance escape. Uranium, which has a resonance integral of 240 barns in a 
dilute homogeneous system, is self-shielded in the energy range of the absorption 
resonances because of the strong absorption at the surface of the lump of neutrons at 
resonance energy. The resulting effective resonance cross section, given by the 
empirical formula, is usually only about 10 barns. 

The Dancoff and Ginsberg self-shielding correction to the resonance escape inte- 
gral,20 which is mentioned in the discussion of resonance escape in this section, is 
another form of self-absorption correction. It is effectively a correction to the surface 
area of fuel element which is available to neutrons, but it arises primarily as a depres- 
sion of the incident flux. 

7.3 The Doppler Effect 
. 

Most neutron interaction calculations picture the collision process as being made 
up of a neutron of some given velocity impinging upon a scattering or absorption 
atom which is at rest. In actuality this picture is not correct, since the target atom 
is in thermal motion in the atomic or molecular system of which it is a part. Because 
there are components of this thermal motion in the direction of the incident neutron, 
the effective energy of the neutron becomes a spread-out distribution about the actual 
neutron velocity with respect to the average position of the target atom. This 
phenomenon is entirely analogous to the Doppler broadening of lines iq optical spec- 
troscopy or to the shift of acoustic frequency due to a motion of the source of sound 
with respect to the obscrrer. For this reason it is referred to as a Doppler effect. 

It can be shown, for a Maxwellian distribution of target atom velocities and a l/v 
cross section, that the motion of the target nucleus makes no difference in the effective 
cross section of the interaction. Although this condition covers a very large fraction 
of the cases of interest, certain cross sections which depart widely from l/v will have a 
not,iceahle change due to the Doppler effect. In particular, for resonances the effect 
can be important. It may be shown that the area under a Breit-Wigner resonance 
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is not changed by this target atom motion, so that in very dilute systems there is 
again no reactivity change due to Doppler effect. However, in many cases of interest 
the resonance peaks may be strongly self-shielded. The vibration of the target atom 
(which lowers the effective resonance peak height but spreads it out, thus mamtaining 
the same area under the peak) cannot change the effective cross section inside the 
resonance itself, since the absorption is already saturated. However, the widening 
of the resonance will cause a widening of the region of strong capture, so that absorp- 
tion in the skirts of the resonance will increase. 
broadening” 

This effect is referred to as “Doppler 
of the resonance. It is of importance to reactor operation. 

In low-enrichment reactors and, indeed, in many others, resonance absorption is 
less desirable than thermal absorption because of a lower probability of fission. 
Hence Doppler broadening will reduce reactivity with increased temperature. That 
is, Doppler broadening produces a negative temperature coefficient. In most reactors 
this negative coefficient is in the range of 1 to 2 X 10-5(Ak/k)/“C. This is a fairly 
small temperature coefficient in most systems. It is still important, however, since 
it is prompt. In a reactor power excursion the removal of reactivity due to this 
temperature coefficient does not lag, since there is no necessity for a heat-transfer 
process to take place. Since fission energy is largely dissipated directly in the fuel 
material by the passage of the fission fragments, the temperature of the fuel rises 
immediately and the Doppler broadening takes effect promptly. Because of this, 
although other temperature coefficients may be larger, the Doppler broadening is 
important to reactor dynamics and safety. 
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6-2 REACTOR CALCULATIONS 

BY 

J. It. Dietrich? 

Nomenclature 
(See also Table 6 for special symbols used in Arts. 7 and 8) 

Complete definitions of the symbols may be found in the sections referred to. 
A = mass number 

B2 = buckling. The geometrical buckling of a medium is that which 
satisfies the equation V2+ + BZ+ = 0 in the medium with proper 
boundary conditions. The material buckling is that which satisfies 
the equation -L*B’J - 1 + (k/p)P,(E,,B*) = 0 (Art. 5.3) 

B’* = in the two-group representation, the ‘Ltransient’J buckling (see 
Table 6) 

D = diffusion coefficient (Art. 2.13) 
E = neutron energy 

F(E) = collision density per unit energy (Art. 3.2) 
f = thermal utilization (Art. 9.2) 

. G(s,z’) = diffusion kernel for thermal neutrons = flux at z due to unit source 
at Z’ (Art. 2.25) 

IO, II, Jo, J,, 
Ko, K,, Yo, YI ) 

= Bessel functions 

J = neutron current density (Art. 2.11) 
k = Boltzmann constant 
k = multiplication constant (infinite) (Art. 9.1) 

k,,f = effective multiplication constant in a finite reactor (Art. 13.1) 
Ic,, = excess multiplication factor (Art. 13.1) 

L = diffusion length = -\/o/Z. (Art. 2.15) 
Lf = slowing-down length (Art. 5.6) 

1 = prompt neutron lifetime (Art. 13.3) 
L? = neutron leakage = fraction of neutrons produced which leak from 

reactor 
M = migration length = z/L2 + 7 (Art. 5.7) 
n = neutron density, neutrons/cm3 

N = number of nuclei per cm8 
N = Avogadro number = number of atoms per gram atomic weight 
p = resonance escape probability (Art. 9.4) 

P(E,r,r’) = finite slowing-down kernel (Art. 5.1) 
P,(E,jr - r’l) = infinite slowing-down kernel (Art. 5.2) 

p, (E,Bz) = three-dimensional Fourier transform of the infinite slowing-down 
kernel (Art. 5.3) 

o(E) = slowing-down density (Art. 3.2) 
Q, q = neutron source strength, neutrons/set or ncutrons/(cmJ) (set) 

R = radius of a spherical or cylindrical medium 

t The author acknowledges with thanks valuable suggestions and review of parts of the manuscript 
by D. H. Shaftman. 
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&’ = in the two-group representation, the ratio +f/+.. (see Table 6) 
1 = time variable 

T = t,hickness of slab medium 
2’ = absolute temperature 
v = neutron velocity 

V = volume 
(y = most probable neulron velocity in a LMaxwell-Boltzmarm dis- 

tribution (Art. 4.1) 
@ = albedo = ratio of current density out of medium to current density 

into medium [if net current is into medium (Art. 2.3)1 
fi = fraction of f&sion neutrons originating from delayed emitters 

(Art. 13.2) 
,!& = fraction of fission neutrons originating from delayed emitters of 

ith species (Art. 13.2) 
y = extrapolation distance measured in transport mean free paths 

(Art. 2.22) 
l = fast fission factor (Art. 9.5) 
q = regeneration factor = average number of fission neutrons pro- 

duccd per neutron absorbed by fissionable material (Art. 9.2) 
x = reciprocal of diffusion length (l/L) 

X, = reciprocal of diffusion length 
X/ = reciprocal of slowing-down length (l/L,) 
X = mean free path of neutron = l/X 

Xi = decay constant of ith species of delayed-neutron emitter (Art. 13.2) 
fro = average cosine of scattering angle per collision of neutron with 

scattering nucleus (laboratory coordinate system) (Art. 2.13) 
Y = average number of neutrons emitted per fission 
4 = average logarithmic change in energy per collision (Art. 3.1) 
p = reactivity = k,,/k,ff (Art. 13.1) 
p = density, g/cm3 
c = microscopic cross section, cm2/nucleus 

(r(l = microscopic absorption cross section 
cd = microscopic scattering cross section 

W;I;T = cross section corresponding to most probable velocity in Maxwell- 
Boltzmann distribution at temperature 2’ (Art. 4.2) 

X = macroscopic cross section, cm-l 
Z, = macroscopic absorption cross section 
Z, = macroscopic scattering cross section 

2.; 2,, = macroscopic absorption cross section for thermal group of neu- 
trons in two-group representation (see Table 6) 

Zr; 2,~ = macroscopic slowing-down cross section for fast group of neutrons 
in two-group representation (see Table 6, also Art. 5.6) 

7(B) = Fermi age from source energy to energy E (Art. 3.4) 
$J = neutron flux density (Art. 1.3) 

&A; 4, = flux density of thermal neutrons 
+r = flux density of fast or epithermal neutrons 
$* = adjoint function (Art. 14.1) . 

1 INTRODUCTION 

1.1 The Fission Reaction 

The basic process which makes possible the nuclear reactor is the fission of heavy 
nuclei by neutrons. The products of a given single fission cannot be predicted, but 
if many fissions are considered, an average equation for the reaction can be written 
for a given fissionable isotope; for example, 

fission 
UzZ6 + 1 neutron ---+ fission product nuclei + Y neutrons 

+ other radiation + energy (1) 
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The significant point for the present discussion is that the average number y of new 
neutrons produced per fission is considerably greater than unity (actually about 2.5). 
The fission chain reaction in a nuclear reactor is maintained at a steady rate if the 
materials of the reactor are so arranged that exact!y one of the Y neutrons produced 
by each typical fission interacts with another fissionable nucleus to produce still 
another fission. If, on the average, less than one of the fission neutrons produces a 
further fission, the neutron population of the reactor will decrease continuously and 
the chain reaction will eventually die out. If, on the other hand, more than one of the 
neutrons from the average fission produces further fissions, the neutron populat.ion 
of the reactor will grow from generation to generation and the level of fission power 
production in the reactor will increase continuously with time. Most problems in 
reactor physics involve either the LJetermination of the necessary conditions for a 
steady-state chain reaction (criticality conditions) or the determination of the rate 
of growth or decay of the chain reaction (reactor kinetics) under given react,or con- 
ditions. In either case, the statics or kinetics of the chain reaction is determined by 
the statics or kinetics of the neutron population of the reactor. The problem is usually 
solved by investigating the life histories and reproductive powers of iiaverage” 
neutrons. Evidently, then, the subject of reactor physics consists mainly of neutron 
physics or, more specifically, of the physics of neutron transport and neutron intcr- 
actions with matter. 

1.2 Fundamental Neutron Processes 

The individual neutron can exist for only a short time as a free particle. It ceases 
to exist as a particle when it enters the nucleus of an atom and becomes integrated 
into the structure of that nucleus. When such an event occurs, the neutron is said 
to have been absorbed by the nucleus. The resulting modified nucleus may be stable 
or may be unstable and emit other particles, including neutrons (as in the case of 
fission), but in any case the original neutron is considered to have ceased to exist. 
Aside from absorption, which ends its life, the neutron can interact with matter only 

. by making scattering collisions with the nuclei which compose the matter. These 
interactions are called collisions because the free neutrons in a material medium are 
normally traveling about, in the spaces between nuclei, at high velocity. The veloci- 
ties may have been imparted to the neutrons when they were formed or may be the 
velocities of thermal agitation. In a scattering collision the velocity of the colliding 
neutron is usually changed, both in magnitude and in direction. If the neutron 
imparts only kinetic energy to the body with which it collides, the collision is said to 
he elastic. If it changes also the internal energy of the target body, the collision 
is said to bc inelastic. 

1.3 Quantitative Specification of Interaction Rate : Cross Sections 

Experimentally it is found that the number of interact.ions of any given type 
(scattering, absorption, fission, etc.) which occur per second per unit volume of a 
material containing neutrons depends, for a material of given nuclear species, only 
on the number of nuclei per unit volume, the number of neutrons per unit volume, 
and the effective neutron velocity. This relationship is formulated quantitatively 
by supposing that each nucleus of a given species presents a target for a given type 
of interaction of area U(V) cm2 to any neutron traveling with ve1ocit.y ZI (the neutron 
itself being considered a dimensionless point). On this basis a given neutron, in 
the time interval 4t, will travel a distance v At cm a.nd will experience interactions of 
the specified type with all nuclei which lit within t,he volume U(V)V it cm3. If there 
is a uniform density of N nuclei per cubic centimeter, the number within this volume 
is just No(v)v At. If the neutron density within the medium is n neutrons per cubic 
centimeter, then the rate at which interactions of the specified type are occurring 
per unit volume is 

No. of interactions/(cm3)(scc) = nvNu(v) (2) 

The quantity nv is called the neutron flux. It is often represcntcd by the single 
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symbol 4. Its dimensions are neutrons per square centimeter per second. The 
quantity c is called the microscopic cross section for the type of interaction under 
consideration. Its dimensions are square centimeters per nucleus. Microscopic 
cross sections are usually quoted in barns. The barn is a unit of area equal to 10-z’ 
cm2. However, in the equations presented here the units of c are square centimeters 
unless otherwise specified. The quantity Nu is called the macroscopic cross section. 
It is the total target area for a given interaction which is presented to a neutron by all 
the nuclei in a cubic centimeter of material; its dimensions are cm2 per cm3, or cm-i. 
It is often represented by the single symbol Z. 

The average number of interactions made by a neutron in traveling 1 cm is just 
NU = Z. Conversely, the average distance traveled by a neutron between inter- 
actions is l/2. This distance is called the mean free path for the type of interaction 
under consideration and is usually designated by the symbol X. 

As implied above, a microscopic cross section is assigned to each nuclear species 
for each type of neutron interaction, and in general the cross section is a function of 
neut,ron velocity (or, more precisely, of the relative velocity of the neutron with 
respect to the interacting nucleus). Although from the standpoint of nuclear physics 
the cross sections for the various types of interactions are not necessarily independent 
of one another, for the purposes of neutron physics they may be and are considered 
to be so. 

Evidently the concept of the cross section is not a particularly useful one unless 
the cross section is a property of the nucleus alone, unaffected by such considerations 
as the molecular or crystal structure of the material in question. This condition is 
met in most cases which arise in elementary reactor theory. When it is met, any 
material may be regarded simply as a mixture of the various nuclear species present, 
and the macroscopic cross section for any given type of neutron interaction is just 
the sum of the macroscopic cross sections of all the nuclear species for that type of 
interaction; i.e., 

where Ni is the number of nuclei of the ith species per cubic centimeter of the medium, 
pi is the number of grams of the ith species per cubic centimeter of medium, Ai is the 
atomic weight of the ith species, and N is the Avogadro number. 

1.4 Sizes of Cross Sections and Other Important Dimensions 

Scattering cross sections for neutrons of energies important in reactor physics 
range from about 2 X 10mZ4 to about 20 X 10mz4 cm2. Absorption cross sections 
cover a much wider range of values. For neutrons of thermal velocities the absorption 
cross section of hydrogen is about 0.3 X lo-** cm2, that of iron is about 2 X lo-*’ cmz, 
and that of the boron isotope of mass 10 is about 4 X lo-*i cm2. If the cross section 
is visualized as circular in shape (i.e., as the cross section of a sphere), the radius cor- 
responding to a cross section of, say, 10 X lo+ cm2 is about 2 X lo-r2 cm. The 
average distance between nuclei in typical solids or liquids is very much larger, of the 
order lo-* cm. That is to say, even though many nuclei are packed into each cubic 
centimeter of material, the targets which they present to a neutron for interaction are 
so small that the neutron may, in typical cases, travel distances of the order of centi- 
meters between interactions. Consequently, one of the problems in maintaining a 
neutron chain reaction is simply to contain a large fraction of the neutrons in the 
reactor long enough for them to interact with the fissionable material. The wandering 
away of neutrons before they can be absorbed is generally referred to as leakage from 
the reactor. 

Despite the relatively long distances traveled between interactions, typical neutrons 
have such high velocities that they exist for only a short time before being absorbed. 
The mean lifetime of a neutron in a reactor depends upon the reactor design but is 
seldom more than 10m3 sec. It is not possible to maintain a high density of neutrons 
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in the face of such a short lifetime unless the rate of production of neutrons per unit 
volume by fission is very high, i.e., unless the power production per unit volume is 
very high. In the reactors built to date it has not been possible to achieve power 
densities which give neutron densities greater than about lo9 neutrons/cm3. Since 
the atomic density in typical solids or liquids is of the order 10z3 atoms/cma, it is 
evident that the probability that a neutron will encounter an atomic nucleus is enor- 
mously greater than the probability that it will encounter another neutron. Because 
of this circumstance, that every free neutron in the medium acts independently of 
all other free neutrons, the equations which describe the flow of neutrons in a medium 
are linear. Some of the consequences of this linearity are discussed in Art. 2.25. 

1.6 Conditions for the Chain Reaction 

As stated in Art. 1.1, a steady self-sustaining chain reaction is maintained in a 
nuclear reactor if the materials of the reactor are so arranged that exactly one of the 
Y neutrons produced by each average fission reacts with an atom of fissionable material 
to produce another fission. The subsequent articles have indicated that two processes 
compete with the fissionable nuclei for the free neutrons. . absorption by nonfissionable 
nuclei and leakage from the reactor. The condition for criticality of the reactor can 
be written in terms of these two processes if two new symbols are defined: 
d: = fraction of neutrons produced which leak from the reactor 

k= 
No. of second-generation neutrons produced 

No. of first-generation neutrons absorbed (by all materials present, including 
fissionable material) 

The equation for criticality is, then, 

k(1 - .e) = 1 (4) 

. The quantity k can be stated in a more significant way if another symbol TJ is 
introduced. The quantity 11 is the average number of fission neutrons produced per 
neutron absorbed in fissionable material. In general q is less than Y. The expression 
for k becomes 

k = 9 No. of neutrons absorbed in fissionable material 

total No. of neutrons absorbed 

According to Eq. (4), k must be made relatively large and 6: must be made relatively 
small if the chain reaction is to be self-sustaining. The maximum value of k is 
attained if the reactor is made of pure, fissionable isotope. Such a reactor is of little 
use as a power source, since no effective means is supplied for removing the heat which 
is generated and converting it to useful work. Practical power reactors must contain 
materials other than the fissionable isotope. These materials serve the purposes, for 
example, of coolants, structural materials, and cladding to prevent the escape of 
fission products from the fissionable material and, in some cases, to protect the fission- 
able material from chemical attack by other materials. Furthermore, in many cases 
fertile materials-isotopes which can be converted to fissionable isotopes by the 
absorption of neutrons-are included in the reactor. Consequently, in many cases 
the practically attainable value of k is not much greater than unity, and d: must be 
made quite small in order to achieve criticality. This requirement is particularly 
demanding if the reactor is to be fueled with the naturally occurring mixture of the 
fissionable isotope W5 with the fertile isotope U238. 

One way of decreasing $--of decreasing the probability that a neutron will wander 
out of the reactor-is to make the reactor large. Another method, which is more 
economical, is to include in the reactor a good moderating material: a material of 
low mass number, low absorption cross section, and relatively high scattering cross 
section. The neutrons, in elastic collisions with the moderator nuclei, are slowed 
down to relatively low velocities. Since absorption and fission cross sections are 
much larger for slow than for fast neutrons, the moderation, or slowing down, of the 
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neutrons increases their probability of absorption and hence decreases the leakage 
probability. Most frequently, in a moderated reactor, the amount of moderator 
employed is so large that most neutrons come into energy equilibrium with the thermal 
agitation of the moderator nuclei before they are absorbed. Such a reactor is called 
a thermal reactor. 

Reduction of leakage is not, of course, the only way in which neutron moderation 
affects the criticality condition. Since fission and canture cross sections varv with I 
neutron energy in different ways, the value of k which* applies for a given mixture of 
absorbing and fissionable isotopes depends upon the energy spectrum of the neutrons 
present. This dependence is strikingly illustrated by the fact that whereas it is 
quite feasible to construct a critical thermal reactor which employs as fuel the natu- 
rally occurring mixture of Uza5 and UzJa, the value of k for a large block of pure natural 
uranium (no moderator added) is considerably less than unity. 

The methods outlined in this subsection apply primarily to thermal reactors, 
although much of the basic material, as well as the specific methods of Art. 10, are 
more generally applicable. 

1.6 Outline of Subsequent Treatment of Reactor Physics 

To summarize the foregoing, the behavior of a nuclear reactor is determined by the 
migrations of neutrons, their slowing down, and the relative rates at which they are 
absorbed by fissionable and nonfissionable isotopes. When these processes are such 
that the neutron populnt.ion of the reactor remains constant in time, the reactor is 
said to be critical; the study of the conditions for criticality constitutes the subject 
of reactor statics. The behavior of the neut.ron population when the criticality con- 
dition is not fulfilled constitutes the subject of reactor kinetics. The remainder of 
the subsection is devoted principally to reactor statics; further material on kinetics is 
contained in Sec. 8-l. 

The material in the remainder of this subsection may be summarized as follows: 
Article 2 treats the flow of neutrons of uniform energy in a medium. Article 3 treats 
the slowing down of neutrons to thermal energy, and Art. 4 describes their distribution 
in energy after they have reached thermal equilibrium in the moderator. In Art. 5 
the criticality condition for a reactor is stated quantitatively as a partial differential 
equation in terms of the fundamental processes covered in the preceding sections. 
Article 5 amounts to a quantitative statement for the leakage C of Eq. (4). Article 6 
gives solutions for the critical reactor equation in simple geometries, and Arts. 7 and 8 
outline methods of solution for the more complex cases of reflected reactors, Article 9 
covers the evaluation of the constants which enter the reactor equation, including 
the multiplication constant, k [Eq. (4)]. 
and the more complex ‘(lumped” cases. 

This article covers both homogeneous cases 
Article 10 outlines briefly the multigroup 

technique which can be used for both thermal and nonthermal reactors. In Art. I1 
typical computation procedures are illustrated by specific examples. Article 12 treats 
the effects of lumped thermal-neutron absorbers, such as control rods or experimental 
samples, in a reactor. Article 13, on noncritical reactors, is a very brief treatment of 
reactor kinetics and concepts related to reactor kinetics. In Art. 14 relations are 
given by which the reactivity effects of small changes in a previously critical reactor 
may be evaluated. 

Throughout the subsection an attempt has been made to limit the coverage to those 
items appropriate to handbook treatment. Individual computations which would 
normally take more than an hour or two of work on a desk-type calculating machine 
or a slide rule for their execution are considered to be beyond the scope of a handbook. 
The treatment of neutron migration has been limited to the diffusion approximation. 
In general, where specific approximations are used, they are noted. A complete 
discussion of the implications of such approximations and of their range of appli- 
cability is evidently beyond the scope of the subsection. Finally, although an effort 
has been made to arrange the topics in a logical sequence and to impart as much 
physical understanding as can be done in a brief space, the presentation is obviously 
not intended to approximate a logical and integrated development of reactor theory. 
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It is intended, rather, that the subsection constitute a convenient reference for those 
elementary formulas and procedures which occur frequently in the course of reactor 
computation. 

2 DIFFUSION OF “MONOENERGETIC” NEUTRONS 

Conceptually, the material of this article applies to the diffusion of monoenergctic 
neutrons; practically, it is applied to groups of neutrons whose energy spread is narrow 
enough and predictable enough that averaged values of properties of the medium 
may be used. The most common case is that of thermal neutrons. The averaging 
of diffusion properties over the thermal-energy spectrum is treated in Art. 4. 

2.1 The Diffusion Equation 

2.11 Current Density. The current density J is the net number of neutrons 
flowing in unit time through a unit area normal to the direction of flow. 

J = -Dgrad+ (5) 
or. in Cartesian coordinates, 

J’= -D(i~+j~+k~) (6) 

where D is the diffusion coefficient and i, j, and k are, respectively, the cosines of the 
angles between t,he 2, y, and z directions and the normal to the plant across which 
current density is being measured. That is to say, the net current density across the 
plane has directional components J,, J#, and J,, given by 

J z-03 z J = -DC4 
ax 21 

J = -1) k? 

aY * a.2 

Each component (e.g., J,) of the net current density is the difference between a for- 
. ward current density component J,, an d a reverse current density component J,-, 

given by 

Jz++;$ J/f+f$ (7) 

with similar expressions for the other directions. 
2.12 Neutron Leakage Rate. The rate at which neutrons leak from unit volume 

in a diffusion medium is 

Neutron leakage/(unit vol)(sec) = -D V2+ 

E-D $+$+$ 
( 

(8) 

in Cartesian coordinates where V* is the Laplacian operator (see Sec. 3-2 for other coordi- 
nate systems). 

2.13 Evaluation of Diffusion Coefficient D. If experimentally dctcrmined values 
of D are not available, the following relation (from transport theory) may be used: 

D= 
I 

cJZ(l _ p 0 ) 1 - 4 5 3 Pa . . . 
52 

+ + 
:: 1-p, 

(9) 

where Z and Z, are the total and absorpt,ion macroscopic cross sections, respectively, 
and PO is the average cosine of the scattering angle per collision (stationary coordinate 
system). 

If the medium absorbs only very weakly, the expression becomes 

DE--L- =k 
3&(1 - ii;io) 3 

(10) 

where Xlr is the transport mean free path. 
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In reactor systems, scattering of neutrons is essentially isotropic in the center of 
mass coordinate system, and for this.condition 

po = cos $ = -x 
3A 

(11) 

where $ is the scattering angle in the stationary (laboratory) coordinate system and A 
is the mass number of the diffusion medium. 

2.14 Neutron Balance per Unit Volume-The Diffusion Equation. The rate of 
change of neutron density n (= number of neutrons per cubic centimeter) is given by 

dn 
- = rate of leakage into unit vol - rate of absorption/unit vol 
dt 

+ rate of production/unit vol 
= D v*4 - X,4 + S(r) (12) 

where S(r) is the effective source strength, or effective rate of production of neutrons 
per unit volume. The quantity S(r) is smaller than the actual source strength by the 
factor [l - g((z,/Z)] because of the breakdown of diffusion theory near the source. 

2.16 Source-free, Steady-state Diffusion Equation; Diffusion Length. In any 
portion of a medium which contains no sources, the steady-state diffusion equation 
becomes 

Dv=4 - 2,4 = 0 
generally written V24 - x24 = 0 (13? 

where x2 = P&/D. The reciprocal of K 2, D/Z,, is called the diffusion area and is 
represented by the symbol L2, which can be shown to be one-sixth the mean square 
distance (crow flight) traveled by a neutron in a diffusion medium between the time 
of its birth and the time of its absorption. The square root L of the diffusion area 
is called the diffusion length. 

The diffusion equation, when written in the form of Eq. (13), is frequently referred 
to as the wave equation. 

2.2 Solution of the Diffusion Equation . 

2.21 General Considerations. The solution of the steady-state diffusion equation 
in an infinite medium can be written out formally, for the general case of an arbitrary 
distribution of sources, by use of the diffusion kernels (see below). The solution for a 
finite medium is difficult unless the source distribution and the boundaries display a 
reasonable degree of symmetry. A few useful cases of relative simplicity are treated 
in following paragraphs. Other cases are covered later (Art. 12) in connection with 
lumped absorbers in the reactor. Solutions for a great many cases are given in a 
paper by Wallace.r* t 

Before the solutions can be given, it is necessary to consider the boundary conditions 
which apply at the edges of finite media. The diffusion equation does not describe 
accurately the flux behavior near boundaries. If, however, appropriate boundary 
conditions, derived by transport theory, are applied, the solutions of the diffusion 
equation will describe the distribution of flux adequately in all parts of a finite medium 
except those within about one mean free path of the boundary. The conditions for a 
number of cases are given below. 

2.22 “Black” Boundaries. A boundary is called black if no neutrons which cross 
the boundary from the medium return to the medium. External boundaries between 
the medium and vacuum are black. Boundaries between the medium and very strong 
absorbers, either internal or external, may often be cofisidered black for practical 
purposes, the criteria being that the absorber be thick enough to reduce the neutron 
flux pracbically to zero in its interior and that Z. >> 2, in the absorber. Evidently, 
the neutron flux in the medium will decrease as the boundary is approached. The 
boundary condition depends on the geometry of the boundary and on the transport 

i Superscript numbers refer to References at end of subsection. 
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mean free path in the medium. tt is generally stated either as the value of the 
logarithmic derivative of the flux at the boundary 

. 

1 a+ [ 1 1 -- =-- 
,$ dz boundary YXII 

(14) 

where 5 is the coordinate normal to the boundary (the positive direction being from 
medium to boundary) and y is a number characteristic of the shape of the boundary, 
or as the extrapolation (or augmentation) distance e: 

e = yxt, (15) 

The extrapolation distance is defined as the distance beyond the boundary at which 
the flux would become zero if its normal derivative at the boundary were extrapolated 
linearly. The two methods of statement of the boundary condition are equivalent. 
A convenient way of applying the condition of Eq. (15) is simply to set up a fictitious 
boundary (the extrapolated boundary) at a distance t beyond the true boundary and 
require that the neutron flux vanish at this extrapolated boundary. This boundary 

0 - 1 2 3 
RAOlUSbF SPHERE OR CYLINDER, IN MEAN FREE PATHS 

FIG. 1. Estimated values of linear extrapolation length for “black” spheres and cylinders. 
(Reproduced from: B. Davison and S. Kushneriuk, Lima7 Eztrapolation Length for a Black 
Cylinder, National Research Council of Canada, Division of Atomic Energy, MT-214, 
March 30, 1946.) 

condition is not strictly equivalent to that of Eq. (14) (since the solution of the 
diffusion equation is not, in general, linear between the real and extrapolated bound- 
aries), but it is adequate for almost all practical cases. Values of y for various geom- 
etries are given below. These apply for media of low absorption (strictly, for non- 
absorbing media). 

Plane Boundary. y = 0.71. 
Internal Cylindrical and Spherical Boundaries. The extrapolation distance varies 

with the curvature; y ranges from $5 for vanishingly small radius to 0.71 for infinit.e 
radius. Figure 1 shows the probable dependence of y on radius of black absorber 
as estimated by Davison and Kushneriuk. 

2.23 “Gray” Boundaries. A strong absorber which yet does not absorb all the 
neutrons incident upon it is often referred to as a “gray” absorber. Diffusion theory 
does not describe the neutron flux behavior accurately in the vicinity of such an 
absorber. Kushneriuk and McKay have derived extrapolation distances, by approxi- 
mations to transport theory, for “gray” cylinders embedded in nonabsorbing, scatter- 
ing media (Fig. 2). These extrapolation distances may be used with diffusion theory, 
in the same way as the black boundary extrapolation distances, to determine the flux 

distributions in the scattering medium. 
2.24 Boundaries between Nonabsorbing (or Weakly Absorbing) Media. The 

boundary conditions between two diffusion media are 
1. The neutron flux is continuous across the boundary. 
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2. The neutron current density in a direction noimal to the boundary is continuous 

across the boundary. 
If the two media are nonabsorbing, the presence of the interface does not affect 

the adeauacv of the diffusion annroximation. If either or both of the media absorb. 
higher order”approximations to transport theory are needed to describe the neutron 
distribution adequately.2 Nevertheless, the diffusion approximation, with the above 
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boundary conditions, is used in many re- 
actor calculations when the absorption is 
not extremely large. 

2.26 Solutions of the Steady-state 
Diffusion Equation in Infinite Medium- 
The Diffusion Kernels. The steady-state 
diffusion equation is 

D v2+ - 2,+ + S(r) = 0 (16) 

The equation is linear. Physically, this 
is because the mutual interactions be- 
tween free neutrons are completely negli- 
gible at practical flux densities. Because 
of the linearity property, any superposi- 
tion of solutions is a solution of the equa- 
tion, and the flux distribution resulting 
from any arbitrary distribution of sources 
is just the superposition of the flux distri- 
butions due to the individual sources. 

It is therefore useful to tabulate the 
flux distributions due to unit delta-func- 
tion sources of various geometries (point 
sources, line sources, etc.) in an infinite 
medium. The flux distribution for such 
a unit source is called the kernel for the 
source. It will be denoted by G(u,u’). 
The quantity G&u’) is just the flux at u 
due to unit source ‘at u’. The flux 4(u) 
at u due to an arbitrary distribution of 
sources S(u’), defined in the volume V in 
an infinite medium, is 

RADIUS OF CYLINDER 

ITIC;. 2. Linear extrapolation length for a 
“ gmy” purely absorbing cylinder in a non- 
capturing medium. The unit of length for 
both radius of cylinder and extrapolation 
length is the mean free path in the sur- 
rounding medium. a is the radius of the 
cylinder, and 01 is the ratio of macroscopic 
absorption cross section in cylinder to 
scattering cross section in the surrounding 
medium. (Reproduced from S. A. Kush- 
neriuk and C. McKay, Neutron Density in an 
I&&e Non-Capturing Medium Surround- 
ing a Long Cylindrical Body which Smtters 
and Captures Neutrons, Atomic Energy of 
Canada Limited, CRT-56G, July, 1954.) 

(17) 

where the differential dV’ signifies that 
the volume integral is to be taken over 
the source distribution. The kernels 

G(u,u’) are the solutions of the steady-state source-free diffusion equation 

D v2+ - Z,+ = 0 

in an infinite medium, the single source being considered a separate region of infini- 
tesimal extent. The solutions apply (within the limitations of diffusion theory) 
throughout the infinite medium except infinitesimally near the source. Kernels for a 
number of source geometries are given in Table 1. 

2.26 Solutions of the Steady-state Diffusion Eqiation in Finite Media with 
Localized Sources. If the geometry of the medium (and of any sources which may 
exist in the medium or at its boundaries) can be described by a single coordinate, the 
solutions are simple. Table 2 gives the general solutions for such one-dimensional 
cases in the usual geometries, as well as the solutions of some typical specific problems. 

The three-dimensional case will be illustrated by a problem in rectangular coordi- 
^ 
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Table 1. Diffusion Kernels in Infinite Media 

SOUtW 
geometry 

Point 

Plane 

Gnr(r,r’) 

G&T') 

Line of infinite length Gz(r,r’) 

Spherical shell 

Cylindrical ahell of infi- 
nite length 

3ymbol for 
kWIE1 

Gdr,~‘) 

G.(r.r’) 

- 

_- 

- 

Source strength 
and location 

I neutron/aeo at r’ 

I neutron/(cm~)(sec) over a 
plane of infinite extent at 2’ 

1 neutron/(cm) (SW) over B line 
of infinite length, in z direc- 
tion, at r’ 

1 neutron/set per shell of 
radius I’, with center at origin 

I neutron/see per shell of 
radius r’ and unit length, with 
center nt z axis 

Kernel = neutron flux 
at r (or at z, aa tho 

c88e may be) 

47rDlr - r’l 
e-Xll-Z’l 

ZXD 

& Kdxlr - r’l) 

The vectors r and r’ exe both 
taken from the z axis, in a 
plane normal to the axis 

AD (e-xldl - ,-xl’+“I) 

GD Ko(xr)Ia(xr’)r > 7’ 

lr - r’l denotes the absolute value of the vector difference of r and r’. IO and Ko are the modified 
I3essel functions of the first and second kinds, respectively, of zero order. 

nates, for which the diffusion equation in the source-free regions is 

aT? + s?.$ + !?$ - $24 = 0 

. 
If the medium consists of a single material, the equation may be assumed to be 
separable and to have a general solution of the form 

4 = X(Z)Y(Y)Z(Z) 

where X is a function of z alone, Y a function of u alone, etc. X, Y, and Z are then 
the solutions of the equations 

d$ f dX = 0 d$+gay =o g + -pZ = 0 

where (I, ~3, and y arc constants chosen to fit the boundary conditions plus the addi- 
tional condition 

012 f p + y2 + x2 = 0 09) 

The rectangular prism is a typical problem, and is the arrangement frequently used 
for the measurement of diffusion length. If the prism is infinite in the .z direction and 
is bounded in the z and ?J directions by the planes z = 0, a; y = 0, b; and if the source 
of effective strength & neutrons/see is located at the point (z’,y’,z’), the above proce- 
dure leads to the solution 

00 L9 

#&Y,Z) = 
cc 

. m7rx . my 
4hn(z) sm a sm - 

b 
Gw 

n=l n=l 

where 

and 

dz)mn = & 
Inn 

sin F sin F exp ( --Ym,6(~ - r’() 



Geometry of 
medium 

Slab, infinite in y ant 
z directions 

$ 
v& Sphere 

. 

Infinitely long cylinder 

- 

I 

- 

Expanded form of 
diffusion equation 

d’.$ 
- - x’4 = 0 
a29 

. 

~+E~-xl+4J 

2 + ; z - $4 = 0 

G~*Wd 
Bolution 

4(z) = A sinh xz 
+ B cash xz 

d(T) = 

sinh XT 
A---- 

r 

cash xr 
+B--- 

7 

d(r) = Alo(wr) 
+ BKoh) 

Table 2. Solutions of Steady-state Diffusion Equation in Finite One-dimensional Media with Localized Sources 
(For x > 0) 

Typical specific 
problem 

Extrapolated slab boundaries at z = --a 
and I: = +a; infinite plane source of 
uniform strength Q neutrons/(cm~) (see) 
at 2 = $7’ 

Net diffusion otirrent of uniform density J 
neutrons/(cm~)(sec) is flowing into slab 
at z = 0; slab extends to extrapolated 
boundary z = a 

Point source of strength Q neutrons/see 
at center of sphere of extrapolated 
radius = a 

Spherical shell, of extrapolated outer 
radius = a, inner radius = b; diffusion 
current of uniform density J neutrons/ 
(cm’)(sec) flowing into shell at r = b 

Cylindrical shell, of extrapolated outer 
radius = a. inner radius = b; diffusion 
current of uniform density J neutrons/ 
(cm*)(aeo) flowing into shell at r = b 

Q sinh x(n + 2’) 
4(z) = - 

XD sinh Zxa 
smh x(a - z) for z > z’ 

Q sinh x(a - z’) 
I 

4(z) = ;;ii 
sinh 2~3 

smh x(a + z) for z <z’ 

4(z) = J 
xD co.41 xa 

sinh x(a - z) 

4(r) = --c- 
sinh x(a - r) 

4rD ainh xa 

J [sinh :(a - 7) 1 
5 

d(r) = 
L r J 

I 

n rsinh x(n - b) u L x cash x; - b) ] br 

4(r) = Alo + BKo(xr) 
where 

A=J Ko(xn) 

xD Ka(xa)Ir(xb) + Io(x 

B=J Io(xa) 

xD Kdxa)ll(xb) + Io(x 

A and B 8~ arbitrary CorMants, to be chosen to fit the boundary conditions. 
D is the diffusion coefficient for the n wdium; x2 = Z./D = I/La = l/diffusion area for the medium. 
11) auu no are me moa~nea I+A~W tunctiooa of first and second kinds. respectively, of zero order; 11 and KI are the modified Bessel functions of first order. 
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For large values of Iz - z’[ all terms of the summation except those for which m = 1, 
?z = 1 become negligible, and the solution becomes 

where 

&,y,z) = A sin % sin =f exp 
[ ( 

- 

2& sin ~’ sin ~ 
A = abD[x2 + (~z/az)~?$ a b 

(21) 

For this case the quantities G/a2 and d/b2 are called the bucklinp in the x and y 
directions, respectively. 

If the prism is finite in the z direction, hounded by the planes z = 0, c, the solution 
is again that given by Eq. (20), but witht 

nay’ sinh ymnz’ 
+(z),,,” = &-sin *sin T sinh sinh r,,,,,(c - z) for 2 > 2’ (22) 

mn mn . 
’ sin m?rz sin A nq’ sinh ymn(c - 2) sinh ymn2 for2 <2’ 

a b sinh ymnc 

and y,,,,, as before. 

2.3 The Albedof 

If neutrons are incident on the boundary of a source-free medium, a Iarge fraction 
of the neutrons which cross the boundary into the medium may, after one or more 
collisions, be scattered back across the boundary and out of the medium. The albedo 
b is a reflection coefficient which characterizes this process quantitatively. It is 
defined as the ratio of current density out of the medium (negative) to current density 
into the medium (positive) : 

. B = Ed,,".,.,, = [i$$ii : ~~:~~i~~~~~~l~.,..~.., (23) 

where z is measured along a vector normal to the boundary and directed into the 
medium. 

Within the limitations of diffusion theory, the albedo is characteristic only of the 
geometry and the material characteristics of the medium. Albedos for a number of 
geometries are given below. 

2.31 Infinite Medium with Plane Boundary: 

For the case of XD < 1, 
6% 1 - 4xD (25) 

If the scattering is isotropic also, XD = (I/&) 2/Z&. 
But Z/Z, is just the total number of collisions (N) made by the average neutron 

in the medium before absorption, and 

This relationship aids in the physical understanding of the neutron “reflection” 
process. 

Within the framework of diffusion theory only an isotropic distribution of velocities 
of incident neutrons can be considered. In many practical cases the distribution is 

t The solution is valid regardless of which dimension of the prism is taken as the .z dimension, i.e., 
regardless of the dimension in which the sinh term is used to describe the distribution. However, con- 
vergence of the series is good only if the longest dimension is taken as the z dimension. 

t See Ref. 3. See also Art. 4.4 of Sec. 6-I. 
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not isotropic (e.g., a neutron beam incident on the medium). The albedo as derived 
from more detailed considerations of neutron transport is, for the case of low absorp- 
tion and isotropic scattering, 

P=l-+* for glancing incidence (27) 

8=1-2T for normal incidence 

The albedos below, for other geomctrics, apply for isotropic incidence only. 
2.32 Slab of Finite Thickness a: 

8= 
1 - 2xD cath xa 

1 + 2xD coth xa 
2.33 Sphere of Radius a: 

B = 1 - 2xD[coth xa - (l/xa)] 
1 + 2xD[coth xa - (l/xa)] 

2.34 Infinite Medium Surrounding Sphere of Radius a : 

B = 1 - 2D[K + (l/e)1 

1 + 2D[x + (l/a)1 

(29) 

(30) 

2.36 
Inside : 

Spherical Shell, Inner Radius a, Outer Radius b; Neutrons Incident from 

B = 1 - 2D[x coth x(b - a) + (l/a)] 

1 + 2D[x coth x(b - a) + (l/a)] (32) 

3 SLOWING DOWN OF NEUTRONS 

The kinetic energy of fission neutrons varies over a wide range, but it is in all cases 
high compared with thermal energies. In the course of their lives in a reactor such 
neutrons will, in general, lose energy by nonabsorbing collisions with nuclei of the 
reactor materials. The energy spect,rum of neutrons in a typical thermal reactor 
will consist of a slowing-down spectrum which describes the distribution of energies 
among the neutrons being slowed down, plus a thermal spectrum of neutrons which 
have come into equilibrium with the thermal energy distribution of the reactor atoms. 
The slowing-down distribution will be described in this section, and the thermal dis- 
tribution in Art. 4. 

For very fast neutrons the slowing-down collisions may be either elastic or inelastic. 
The elastic process is by far the more important one in determining the effective 
behavior of neutrons over the entire energy spectrum in a thermal reactor and is the 
process which will be considered here. The effects of inelastic slowing down can, 
however, be included in the constants, such as 7 (Art. 3.4), which describe the slowing- 
down distribution in the reactor. 

3.1 Loss of Energy in a Single Elastic Collision 

The loss of energy in a single collision with a stationary nucleus depends upon the 
mass number of the scattering nucleus and upon the angle 0 between the original 
direction of the neutron velocity and the direction after the collision. It is useful 
in describing the mechanics of elastic collisions to employ the center of mass coordi- 
nate system. The origin for this system is at the center of mass of the neutron plus 
the nucleus with which it is colliding. Thus the center of mass (or C) system moves 
at constant velocity with respect to the laboratory (ok L) coordinate system, and the 
collision always takes place at the origin of the C system. The scattering angle @ 
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in the L system is related to the scattering angle #J of the C system by 

6-43 

-___ cos e = /:‘,““,“,“,os 4 (33) 

where A is the mass number of the scattering nucleus. 
The ratio of the neutron energy after collision to the energy before collision is 

where 

E -= 
EO 

y + (q) cos 4 

A-l? r= ___ 
( 1 d + 1 

(34) 

(35) 

The minimum value of E/E0 occurs for 4 = 180” (head-on collision) and is equal to r. 
For neutrons in the energy ranges important for thermal reactors, the assumption is 
usually made that all values of cos 6 are equally probable (the scattering is spherically 
symmetric in the C system) and hence all values of E/EC, from 1 to T are equally 
probable. The average logarithmic change in energy per collision .$ is then 

=1+ +lr (36) 

The limiting values of E for A = 1 (hydrogen) and A = w are, respectively, 1 and 0. 
If the moderator contains n different species of nuclides, of scattering cross section 

B,i and average logarithmic energy decrement per collision ti, and if all the scattering 
cross sections are either independent of energy or vary in the same way with energy, 
then the average logarithmic energy decrement per collision 1 for the mixture is 

n 

2 
zsi,ti 

. I- i=,’ (37) 

c 
B,i 

i=l 

L&orgy. Frequently, in treating the slowing down of neutrons it is convenient to 
employ a dimensionless variable, called the lethargy, in place of the energy variab!c. 
The lethargy u is defined by: 

EO u=ln- 
E 

where E. is the initial energy of the neutron and E is the energy at the instant in 
question. The quantity .$, then, is just the average change in lethargy of a neutron 
per collision. 

3.2 Collision and Slowing-down Densities 

3.21 The slowing-down density q in a medium is defined as the number of neutrons 
that slow down past a given energy E per cubic centimeter per second. In the general 
case, p is a function of energy and position. In an infinite medium which absorbs 
only thermal neutrons and which is supplied by a uniform source of & fast neutrons 
per cubic centimeter per second of energy E, the slowing-down density is constant 
and equal to & at all energies from thermal to E. 

3.22 The collision density per unit energy, F(E), is simply the number of collisions 
made by neutrons with atoms of the medium per cubic centimeter per second per 
unit energy interval at the energy E. If the neutron flux per unit energy interval 
at energy E is +(E) and the scattering cross section is Z,,(E), then the collision density 
is 

F(E) = WWP@) (38) 
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In an infinite medium which absorbs only thermal neutrons, the collision density as a 
function of energy is given by 

F(E) = $ 

if the medium is hydrogen. For moderators other than hydrogen the collision density 
iS 

F(E) = 2 
EE 

for all energies E below about +Eo [see Eq. (35)]. For higher energies the variation 
of F(E) is more complicated; it is discontinuous at the energy rEll because of the cir- 
cumstance that above this energy neutrons are present which have suffered only one 
collision (as well as those that have had multiple collisions) whereas below rEo all 
neutrons have had at least two collisions.4 

Equation (40) applies for a moderator composed of a mixture of atomic species 
provided it is possible to write an average logarithmic energy decrement t [see Eq. 
(37)] for the mixture. The neutron flux +(E) can be obtained from Eq. (39) or (40) 
bv use of Ea. (38). 

_ ,  I  

4(E) =z =;-& 
* I 

(41) 

Thus, over any energy range for which Z, is constant, the flux is just proportional to 
l/E. This condition holds approximately for many moderators over the resonance 
energy region. 

3.3 Spatial Distribution of Slowed Neutrons 

If there is a point source of fast neutrons in a uniform moderating medium of infinite 
extent, the slowing-down density at any energy below the source energy will have some 
spatial distribution which is spherically symmetrical about the source and which is 

otherwise characteristic of the energy and ? 
P,of the moderator. If we are concerned 

with the calculation of a thermal reactor, 
we are interested-in theslowing-down den- 
sity at some energy just above thermal. 
Each iission in such a reactor is a source 
of fast neutrons. If we know the char- 
acteristic distribution of slowing-down 
density into the thermal-energy region 
from such a fast source, then we can treat 
each fission as a distributed source of ther- 
mal neutrons which diffuse according to 
the laws of Art. 2 until they produce fur- 
ther fissions to maintain the chain reac- 

CENTIMETERS FROM SOURCE tion. By the principle of superposition 

FIG. 3. Flux of 1.44 ev neutrons from a point (see Art. 2.25), the effects of all the sources 
source of 1 fission neutron per second in an 
infinite medium of 1120. 

can be added up independently to give the 
Fe(r) is the flux in 

neutrons/(cm*) (set) (ev). (Reproducedfrom 
reactor equation. The method by which 

J. E. Wilkins, R. L. Hellens, and P. F. 
this is done is treated in Art. 5. We con- 

Zweifel, Status of Experimental and Theo- 
sider here the methods of describing the 

retical Information on Neutron Slowing 
slowing-down dist,ribution. 

Down Distributions in Hydrogenous Media, Figure 3 is a plot of the measured 

Geneva Conf. Paper A/Conf.8/P/597, June slowing-down density distribution, at the 
30, 1955.) &d$m resonance energy, from a point 

fission source in water,‘(the indium reso- 
nance energy is a convenient one at which to make the measurement; the distribution 
is nearly the same as that just above thermal). This curve-is actually the kernel of 
the slowing-down density (see Art. 2.25) for the case in question. If such kernels are 
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to be incorporated into a reactor equation, it is evidently desirable to describe them by 
some relatively simple equation. Furthermore, it is desirable to be able to compute the 
distributions from microscopic data. It is by no means obvious that the distribution 
should be describable by a simple mathematical function; indeed, in the general case, 
it is not. The Fermi approximation, discussed below, gives a simple description 
which is satisfactory for many cases. For an extensive treatment of the slowing- 
down distribution by more rigorous methods, see Refs. 5 and 6. 

3.4 The Fermi Age Approximation 

This approximation is valid only if the scattering mean free path does not vary 
appreciably within any energy interval E to E’, where E’ = rE [see Eq. (35)], and 
if the number of collisions experienced by the neutron in reaching the energy of interest 
is large. The approximation is therefore quite poor for media in which the moderation 
is mainly by hydrogen or deutcrium, but it is widely used for moderators of higher 
atomic weight than these. The approximation does not describe properly the slowing- 
down distribution at distances very far from the source, but at such distances the 
slowing-down density is too low to be important in most reactor problems. 

3.41 The Fermi Age. If we have source neutrons produced at energy ED and are 
interested in the distribution as a function of E for all energies E less than Eo, we 
define a new variable, the Fermi age T, such that 

where D(E) is the diffusion coefficient (see Art. 2.13), Z, is the macroscopic scattering 
cross section, and E is the logarithmic energy decrement per collision. The slowing- 
down density IJ then becomes a function of space and of 7, and its distribution is given 
by the Fermi age equation. .* 

. 3.42 Fermi Age Equation: 
adr,d V2q(r,7) = - 

aT 

for all values of 7 > 0 (i.e., for all energies less than Eo). The initial condition is 

Eov2q(r,r) - ‘9 + S(r) (44) 

where S(r) is the source strength of neutrons of 7 = 0 (i.e., energy Eo); V* is, of course, 
the Laplacian operator. 

Note that 7, although referred to as the age, has the dimension (length)2. It can 
be shown to be one-sixth the mean square (crow flight) distance traveled by a neutron 
from the time of its emission by the source until it reaches the energy E, which cor- 
responds to the value of T. An alternate statement is that 7 is one-sixth the second 

spatial moment of the slowing-down density where the second spatial moment r”(7) 
is defined by 

I 

m 
r2q(r,r)4ar2 dr 

F(r) = O 

/ 
o- 

(45) 
q(r,~)-ld dr 

Q(~,T) being the slowing-down density from a point source at the origin. Equation 
(42) can be used to ‘compute + for a mixture of elements provided the average value 
[Eq. (37)] is used for .$. 

3.43 Solutions of the Age Equation. The Slowing-down Kernels. The solution 
of the age equatiorrfor a unit point source of monoenergetic neutrons at ro in an 
infinite medium, the neutrons being emitted at an energy corresponding to 7 = 0, is 

1 
dW = (4n7)36 exp ( 

-Ir - r012 
47 > 
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This solution is the point kernel for the slowing-down density. It is a displac 
kernel; the slowing-down kernels for a distribution of sources may be superin 
to give the net slowing-down density, as discussed for the diffusion kernels in Art. 

Note that the slowing-down densit.y has the same spatial distribution as the 
error curve. In a given moderator containing a single point source, the slowing 
density is always highest near the source; it falls off more or less rapidly with di, 
according as 7 is small (high energy) or large (low energy). 

The kernels for the slowing-down density in an infinite medium with various I 
geometries are given in Table 3. 

Table 3. Gaussian Slowing-down Kernels in Infinite Media 
The kernel gives the slowing-down density, at point T (or z as the case may be) and age T, prod, 

unit sources of neutrons of age f located at point r’ (or 2’). The flux #(?,T) can be obtained by d 
the kernel by the slowing-down power E&(T), provided the value of T is one which corresponds 
slowing-down distribution (i.e., provided the neutrons are not thermaliaed). 

source 
geometry 

Point 

Plane 

Line 

Spherical 
shell 

Cylindrics: 
shell 

Symbol for 
kernel 

P,(r,r;r’,s’) 

P.(r,r;r’,r’) 

Source strength 
and location Kernel 

1 neutron/see at ’ 

r’, 7’ 1 

- 

esp ’ -~ 

)r r’l2 

4(r - 7’) 1 
[4,(, - .*)p 

I neutron of age 
d/(cm~)(sec) 
OYer a plane of 

exp [ - g&g 

infinite extent at [4*(7 - r’)ls* 

2’ 
1 neutron of age 

r’/(Cm)(8%) O”W “* [ - &] 
a line of infinite 
length, at r’, 6 4r(r - 7’) 

where pf = r2 -I- r’f - 2~’ cos (6 - 4’) 

I neutron of *ge 
#/SW per shell of 
radius T’, with 
center at origin 

I neutron of age 
r’/see per cm 
length of infi- 
nitely long shell, 
of radius Y’. with 
axis at 7 = 0 

3.44 Slowing-down Distribution from Fission Source. If the number of neu 
emitted per second between energy E’ and E’ + dE’ by a point source at the o 
in an infinite medium, is F(E’) dE’, then the slowing-down density from the sou 

qb,dE)I = / 

OD e-r2/c[r(~)-r(l’)lF(E’) dE’ 

E {4&(E) - T(E’)II$~ 

Similar equat,ions will hold for the other slowing-down kernels. 
Evidently, the slowing-down density at any energy E, as given by Eq. (47), 

longer Gaussian. Nevertheless, in reactor theory, it is often the practice to d 
an effective age ?, which can be used with the point kernel for a monoenergetic SI 
[Eq. (45)], to describe the neutron balance in the reactor. The proper ? is, how 
a function of the size of the reactor (or, more precisely, of the buckling B?). For 
large reactors (small buckling) the effective value of 7 for the slowing-down de 
just above thermal energy is given by 

i = f El 7(E’,E,n)F(E’) dE’ 
/ 
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where S is the total source strength. In other words, for this case, one uses just the 
arithmetic mean of the ages of all the 
thermal. 

fission neutrons, from their source energy to 

3.6 Slowing Down with Absorption 

3.61 Resonance Escape Probability. In an infinite medium containing a uniform 
source of high-energy neutrons of strength &(E,) neutrons/(cm3)(sec), the slowing- 
down density q(Ej at some lower energy E will be just equal to Q(E,) if there is no 
absorption. If there is absorption, the slowing-down density at E will be some 
fraction p(E) of the source strength. 
probability: 

This fraction is called the resonalzce escape 

d-Q = p(E)Q(Eo) (4% 

For a homogeneous medium of total macroscopic scattering cross section Z.(E), total 
absorption cross section X,(E), and effective logarithmic energy decrement z(E), the 
resonance escape probability is calculated by 

2, (E’) dE’ 

-W’)Ps(E’) + Zo(E’)l E’ (50) 

The expression is correct if all the moderation is by hydrogen. It is valid for modera- 
tors of mass number greater than 1 if all the absorption is by a single narrow resonance 
or by a number of narrow resonances provided in every case the energy of a resonance 
is higher than that of the next lower resonance by a ratio which is at least as great 
as (l/~)~ or (l/r)” [Eq. (35)]. 

If the moderator is of mass number greater than 1, and if the absorption cross 
section and the scattering collision density vary only slowly with energy, the resonance 
escape probability is given approximately by7 

2: dE’ 
. TZ, +” vz, E’ (51) 

where 
1 - T - 7.e - Te2/2 

y=- 
l-T-T6 

(52) 

and 
1 

6 =ln- 
T 

(53) 
. 

Although many cases arise in which Eqs. (49) and (50) do not apply rigorously, they 
are used extensively in practice and give reasonably accurate results for most cases, 
particularly if the resonance absorption is not large. 

It should be pointed out that in those cases where the absorption is by resonances, 
the above expressions will give very poor results unless the absorber is distributed in a 
very nearly homogeneous manner. 
media see Art. 9.4. 

For resonance absorption in heterogeneous 

3.62 The spatial distribution of slowing-down density from a localized source of 
fast neutrons in an infinite medium will, of course, be modified from that discussed 
in Arts. 3.3 and 3.4 if the medium absorbs neutrons. If the Fermi model is used, 
and if the medium absorbs only weakly, it can be shown that the spatial distribution 
of slowing-down density q’(r,E) from any source distribution in the absorbing medium 
is related to the slowing-down distribution q(r,E), which would result from the same 
source distribution if there were no absorption, by 

q’(@) = p(EMr,E) (54) 

where p(E) is the resonance escape probability discussed above. It is generally 
assumed in reactor calculations that the same result applies regardless of the slowing- 
down kernel used and, indeed, that the result applies not only for an infinite medium 
but for the finite reactor as well. 

3.63 The Resonance Integral. If the microscopic absorption cross section of a 
material, as a function of energy, is denoted by u,(E), then the resonance integral 
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for the material between the energies E and Eo is 

Resonance integral = 
/ 

,“” uo (E’) ‘; 

[SEC. 6 

Note that since for typical moderators the flux is proportional to l/E in the resonance 
region [cf. Eq. (41)], the resonance integral is just the integral of the absorption cross 
section weighted by a factor which is proportional to the flux in such a moderator. 

3.64 Use of Resonance Integral to Calculate Resonance Escape Probability. For 
the case in which the macroscopic absorption cross section is very much smaller than 
the macroscopic scattering cross section of the medium, the resonance escape prob- 
ability becomes 

p(E) = exp (- I:“$ $J = exp (_ /E”” p y) 
(56) 

where N, is the number of absorber atoms per cubic centimeter. Again, if the scatter- 
ing cross section is constant over the range of important absorption, the resonance 
escape probability can be writ.ten 

p(E) = exp (- + 5 lEEon. $l) = exp [ - i 2 (resonance integral)] (57) 

Note that the ratio N&Z, is the reciprocal of the macroscopic scattering cross section 
of the medium per atom of absorber in the medium. 

Measured values of the resonance integral are usually quoted for the energy interval 
from fission (Eo) to the cadmium cutoff. The upper limit of the energy is usually 
unimportant as long as it is high, since absorption cross sections are low in the million- 
electron-volt range of energies. 

3.66 The effective resonance integral is so defined that an equation similar to Eq. 
(67) will apply even if the inequality Z. << Z, does not hold: 

ana 

p(E) =exp --- 
[ 

’ No (effective resonance integral) 
T z* 1 (58) 

Effective resonance integral = 
/ 

EQ z dE’ 
E tiu2,F 

/ 

EQ 1 dE’ 
= E 1 + (N,u,/&) ua E’ (59) 

Note that for a given absorber the effective resonance integral will depend only on the 
quantity X./N,, the scattering cross section per absorber atom. Thus, a few measure- 
ments of the effective integral as a function of this ratio will define its variation. The 
curve of effective resonance integral vs. Z./N, will, of course, extrapolate to the true 
resonance integral for very large values of Z./N,. 

4 ENERGY DISTRIBUTION OF THERMAL NEUTRONS 

Neutrons slowing down in a moderating medium, if they are not captured first, will 
eventually reach such low energies that upon collision with nuclei of the medium they 
may either lose energy or gain energy from the thermal motions of the nuclei. KIlti-. 
mately they come into equilibrium with the nuclei of the medium, gaining, on the 
average, as much energy as they lose. The neutrons in such a case are referred to as 
thermal neutrons. 

4.1 The Maxwell-Boltzmann Distribution 

If the absorption is quite low, the neutron energy distribution follows the Maxwell- 
Bolkmuwzn law, the same as that which describes the distribution of energy of thermal 
agitation among the nuclei of the moderator. If n(E) is the number of neutrons per 

-L 
‘..-. 

z>; 

..a 
i” 

.* 
--T 

.,-< 
.t I 

./ :; 
.: 

;: 
. . : .,-q 

..- 
.- 
-> 
‘. 

:I 

i_ 

;; 

-. 

:_ 

. . 

7 

k. 

.: 



REACTOR CALCULATIONS 

unit volume per unit energy interval at the energy E, if n is the total number of thermal 
neutrons per unit volume, and if T is the absolute temperature of the moderator, the 
Maxwell-Boltzmann distribution of neutron energies is 

n(E) 2 EW -= pWkT 

n 4 @We 
030) 

where k is the Boltzmann conslant and is equal to 8.61 X 10e5 ev/“K. 
The velocity distribution of the neutrons is given, in terms of n(v), the number of 

neutrons per unit volume per unit energy interval, by 

44 - =-$~2~)Mvzexp(-~) 
n 

(61) 

where m is the mass of the neutron. 
The most probable velocity OL of the neutrons in a Maxwell-Boltzmann distribution 

is 

(62) 

The energy corresponding to this most probable velocity is 

E = j4rn& = kT 

but the most probable energy is >4kT. 

(63) 

4.2 Specification of Neutron Energy: kT Neutrons 

The energy of a thermal-neutron distribution is ordinarily characterized by giving 
the energy kT corresponding to the most probable velocity in the distribution. 

. Neutrons in a thermal distribution of temperature T are sometimes referred to aa kT 
neutrons. “Thermal cross sections ” are usually quoted as the cross sections for 
monoenergetic neutrons of velocity 2,200 m/set. This velocity corresponds to the 
kT value 0.0253 ev and is the most probable velocity for the temperature 20°C. For 
computing the number of processes occurring in a medium containing a thermal dis- 
tribution of neutrons, an average cross section is usually derived, as discussed in 
Art. 4.3. 

4.3 Averaging of Thermal Cross Sections 

In a diffusion medium, if any process i’s characterized by an energy-dependent cross 
section x(E), then the number of such processes occurring per unit volume per second 
y;;ezi: energy interval is $+3)X(E),. where q%(E) is the neutron flux per unit energy 

. In the thermal-energy region, the cross section may be averaged over the 
Maxwell-Boltzmann distribution of jkx to obtain an average cross section which, 
when multiplied by the total IhermaZfEur, gives the total number of processes occurring 
per unit volume per second in the thermal-energy region: 

j-i Z(E) [-&&e-‘“T] (E)‘dE 

= 
s?e4 e-E/kT m I( ) 2E ~4~~ 

Z(E) Ee-E/kT dE (64) 
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The averaging can be done numerically for any measured variation of the cross section. 
Obviously, either the macroscopic cross section Z(E) or microscopic cross section 
o(E) can be averaged. 

The use of such averaged cross sections makes it feasible to apply the laws of 
diffusion of monoenergctic neutrons (Art. 2) to the thermal distribution of neutrons. 
Usually it is necessary to average only absorption or fission cross sections. In media 
which show strong variations of scattering cross section with energy in the thermal 
range (e.g., H20) the variations result from int,eractions between the neutron and the 
molecular structure of the medium or from interactions between the neutron and the 
crystal structure of the medium. In these cases the diffusion coefficient cannot be 
derived from a simple average of the scattering cross section, and the only reliable 
values are obtained experimentally. 

If the cross section to be averaged is proportional to the reciprocal of the neutron 
velocity in the thermal region (l/v variation), the relation between the average cross 
section 3 and the kT cross section QT is 

,- 

(65) 

and the average cross section for the absolute temperature T is related to the average 
cross section for the absolute tempcralure To by 

a(T) El -= 
ii r 

056) 

For certain important cross sections which do not follow the l/v variation, the averag- 
ing indicated by Eq. (64) has already been done over a range of values of kT and 
factors have heen tabulated which correct for the departure from l/v dependence. 
Thus, in the cross-sectional compilation of Hughes and Harvey* a correction factor f 
is given as a function of energy for a number of nuclides. If the kT cross section of 
any of these nuc!ides, at energy E, is multiplied by the value off corresponding to the 
same energy E, an effective kT cross section, a.tf(kT), is obtained. The use of this 
effective kT cross section in Eq. (65) will yield the correct value of P averaged over 
the Maxwellian distribution which has its most probable velocity at the energy E. 

4.4 Deviations from the Maxwell-Boltzmann Distribution 

If absorption in the thermal region is large, the energy distribution of neutrons is 
modified by the resultant loss of neutrons. The effeot for practically occurring 
absorbers is to shift the energy distribution toward higher energy values. The 
energy distribution in a medium of atomic hydrogen (constant scattering cross section) 
with l/v absorption has been investigated by Wigner and Wilkins.gJo These studies 
indicate that the absorption does not change the shape of the distribution drastically 
but shifts it toward higher energies. Experiments on existing reactors indicate that 
the effective neutron temperatures exceed the moderator temperatures by the order 
of 50°C. 

Even in the case of weak absorption the Maxwell-Boltzmann equation cannot give 
the true energy distribution of neutrons in the energy range several times kT, for in 
this region the thermal distribution must merge into the l/E distribution which char- 
acterizes the slowing-down process (Art. 3). These two regions may be joined 
approximately by equating the slowing-down density just above thermal energy to 
the total absorption of thermal neutrons 

+. (thermal) 2. = ~(Eth) = +(E)E@a(E) 

\\-here b(E) is the flux per unit energy interval in the energy range just above thermal 
and is thus given in terms of the total thermal flux by 

dE) x =A 
+ (thermal) EWE’) 

(67) 
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On the other hand, 4(E), the flux per unit energy interval, is given in the thermal 
region in terms of 4 (thermal) by the Maxwell-Boltzmann distribution 

b(E) 2 v(E) E44 

$ (thermal) = 1/;; ii O$‘L edE/kT 

The boundary between the thermal and the slowing-down energy regions can 
arbitrarily be defined for a given medium as the energy at which the two distributions 
(67) and (68) give the same value for 4(E). It is to be understood that this is a 
purely formal joining of the two distributions and that neither describes the true 
neutron energy distribution well in the transition region. In most practical problems 
a precise knowledge of the energy distribution in this region is not required. 

6 CRITICAL REACTOR EQUATIONS FOR THERMAL 
AND NEAR-THERMAL REACTORS 

The thermal-neutron diffusion equation expresses the balance between production 
and loss of thermal neutrons in a diffusion medium. In a thermal or near-thermal 
reactor the absorpt,ion of thermal neutrons by fissionable material leads to fissions 
which provide further neutrons, which slow down and uhimately become thermal. 
When the characteristics of the reactor materials and their geometry are so adjusted 
that the production of thermal neutrons by fission followed by slowing down (during 
which process some of the epithermal neutrons may leak from the reactor) is just 
equal to the loss of thermal neutrons by absorption and leakage, the neutron popula- 
tion of the reactor will remain constant in time and the reactor is said to be critical. 
The equation which satisfies this condition of criticality can be derived from the 
diffusion equation [Eq. (12)] by setting the rate of change of neutron density to zero 
and relating the source strength S(r) of thermal neutrons to the fission process. 
For the latter purpose the multiplicdion factor k will be defined. In defining k, the 
medium (reactor) is imagined to be infinite in extent but to contain the same energy 
distribution of neutrons as the finite medium under consideration. The quantity k 
is defined as the number of thermal neutrons which would be produced in such an 
infinite medium, by fission followed by slowing down, per thermal neutron absorbed. 

When the procedure described above is applied, a general reactor equation is 
derived, the specific form of which depends upon the neutron slowing-down law 
appropriate for the reactor composition. By the application of approximations 
which are valid for most practical cases,.the formal solution of the general equation 
can be written in terms of the Wave equation, which specifies the spatial distribution 
of neutrons, plus a ch.aractcristic eqzlation, which specifies the conditions for criticality 
in terms of the buckling of the wave equation and the constants of the reactor materials. 

The remainder of this section will present the reactor equation in detail, its general 
solution, and the form of the equation and its solutions for various common slowing- 
down laws. Detailed solutions for various geometries will be treated in Arts. 6, 7, 
and 8. 

6.1 The Finite, Steady-state, Reactor Equation 

If we apply the “monoencrgetic” diffusion equation [Eq. (12)] to the thermal 
group of neutrons, using appropriat,cly averaged values for the thermal diffusion 
properties of the medium (Art. 4) and identifying the local source strength of thermal 
neutrons S(r) with the local value of the thermal slowing-down density a(Et,r) we 
have 

an&) 
D v2h W - &h(r) + q(E,,r) = at 

where the subscript s designates the thermal (i.e., slow) group of neutrons. 

(69) 
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In a chain-reacting system, the slowing-down density is that resulting from the 
slowing down of fission neutrons. We now designate by P(E,,r,r’) the finite thermal 
slowing-down kernel, i.e., the probability that a fission neutron created at r’, inside the 
reactor, will become a thermal neutron in unit volume at r. 
density then becomest 

The slowing-down 

p(E,,r) = i I reactor wdr’YW.,v’) dr’ 
volume 

where the integral is taken over the entire reactor volume. 
tion then becomes 

The finite reactor equa- 

D V% (9 - Z,+,(r) + $ / 
an,(r) reactor %4&‘)P(E,,r,r’) dr’ = - at (71) 

volume 

or, substituting L2 for D/Z, and applying the equation to a critical reactor (an,/at = o), 

L2 v*4# W - 4s(r) + % / reactor 4dr’)Whv’) dr’ = 0 
volume 

(72) 

This is the finite reactor equation. Evaluation of the final term is evidently quite 
difficult, since P(E.,r,r’) will depend upon the leakage probability of fission neutrons 
formed at r’. In the following section approximations are made which simplify the 
evaluation of P(E,,r,r’). 

6.2 The Asymptotic Reactor Equation 

Far from reactor boundaries the finite slowing-down kernel can evidently be replaced 
by the corresponding infinite kernel Ps,(E,, jr - r’l), which has the characteristic 
that its value is determined only by the absolute distance (r - r’( between the point 
of measurement and the point at which the fission neutrons were born. Such a 
kernel is called a displacement kernel. The reactor equation for this condition becomes 

L2 V24, (r) - 4*(r) + b / p all space 4..(r’)P,(E,,Ir - r’l) dr’ = 0 (73) 

It can be shown that if the extrapolation distance can be considered independent of 
neutron energy, and if the finite and infinite slowing-down kernels satisfy the same 
linear equation (true for the Fermi, group, and transport kernels and convolutions 
of them), then the asymptotic solution holds everywhere in a critical reactor, except 
within a distance of the order of a mean free path from the boundary, and the slowing- 
down density in the reactor is identical with the infinite slowing-down density except 
within a distance of the order of a mean free path from the boundary. The asymptotic 
equation can, therefore, be used for most practical reactor problems. It is this 
equation for which solutions will be given in the following sections. 

6.3 General Solution of the Asymptotic Equation 

The solutions of Eq. (73) are also solutions of the wave equation: 

v24, + B24, = 0 (74) 

where B2 is a constant, which is generally referred to as the buckling of the reactor. 
Until further restrictions are put upon B2, the solutions of Eq. (74) specify only a 
family of possible spatial distributions of neutron flux in the reactor. It is necessary 
to consider further restrictions on the solution which take into account the neutron 

t Historically, both k and P(E.,r,r’) have been 80 defined as to take into account resonance absorption. 
The same definitions have been followed here. 
bility p in the denominator of Eq. (70). 

Hence the sppesrrtnce of the resonance escilpe proba- 
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balance within the reactor. Evidently, once a formal specification of the flux dis- 
tribution has been made, as by Eq. (74), a formal evaluation can be made of the space 
integral of the slowing-down density [last term of Eq. (73)]. In practice this is done 
by taking the three-dimensional Fourier transform P,(E,,B2) of the slowing-down 
density with respect to B2:t 

P,(E,,B~) = 
J 

O1 
--oD 

eiB(r-r’)P,(E,,/r - r’])d(]r’ - rl) 

The characleristic epualion of the transformed reactor equation is then 

(75) 

-a~* - i + ~-P-(E*,B~) = 0 
P 

(76) 

and the complete statement of the general solution is as follows: The asymptotic 
reactor equation [Eq. (73)] is satisfied by any solution of the wave equation [Eq. (74)] 
provided B* is a root of the characteristic equation [Eq. (76)]. Furthermore, the 
slowing-down density qm(E,r) at any energy E is given by 

q&W = % &~,(EP)~&) (77) 

Equations (74) and (76) give two specifications for the buckling B* of the reactor. 
Equation (76) specifies B* in terms of the properties of the reactor materials. 
buckling when so specified is sometimes referred to as the material buckling B,*. 

The 
On 

the other hand Eq. (74), when solved with appropriate boundary conditions, specifies 
B2 in terms of the geometry of the reactor. 
as the geometrical buckling B,z. 

When so specified, B* is often referred to 
Only if the reactor geometry and the characteristics 

of the reactor materials are such that B mz = B,* will there be a solut,ion for the 
steady-state reactor equation that satisfies the boundary conditions. 
(Bm2 = B,*) is referred to as the critical condition. 

This condition 

The above treatment of the general reactor equation is obviously little more than a 
conceptual one. 
of the the0ry.S 

More detailed treatments will be helpful in fundamental applications 
However, for the practical purpose of calculating critical reactors 

. for which the usual slowing-down distributions apply, values of P,(E.,B2) have been 
tabulated (see following sections). For these cases the appropriate value of P, (E., ~2) 
can be substituted into Eq. (76), and solution of the reactor equation involves only 
the finding of a consistent value of B2 which satisfies both the algebraic equation (76) 
and the partial differential equation (74). 

t If $(z,y,z) is B function (scalar or vector) in z, 2/, z space, its Fourier transform ,J(E,~,~) in the new 
t, 7, f space is defined by the equation 

&(P,o,f) = /Te dz j-z- du /“- dz e’(=~+~?+~f~+(z,~,z) 

A compressed notation is generally used, in which (z,v,z) = r’ 
In this notation the transform and its inverse are 

, (E,sf) = o; dz du dz = dr; dt dq df - do. 

, 

&(o) = / +(r)ei“‘rdr 

!I+) = & / J40)e-io.rdo 

G(r) and i(o) are either both scalars or both vectors. 
If the function tic(r) depends only on T = lrl. then its transform $(w) depends only on w = 101, and 

the transformations simplify to 

q(w) = 2 low T+(T) sin W+ dr 

G(r) = hr /R” o&(o) sin or dr 

$ The treatment outlined here is that developed by Weinberg and described in Ref. 2, vol. 2, part 1, 
chap. 5. 
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6.4 Gaussian Slowing-down Distribution (Fermi Age Theory) 1 

The infinite slowing-down kernel and the resulting characteristic equations are 

Kernel. p (E r r,) = p exp b--b - +la/4r(W1 
. - s,, 

[4dEd13*” 
(78) 

Fourier transform: P,(E,,B*) = pe-B’(E*) (79) 
Characteristic equation: 1 + L2B2 = lie-B+@.) (80) 

In these equations, r(Es) is the Fermi age from some “effective” value of the fission 
energy to thermal. Rigorously, this effective value depends upon Bg2, but the value 
for a medium of infinite extent can be used in most practical cases (see Art. 3.44). 

It will be recalled that the Gaussian slowing-down distribution results from the 
assumption of “continuous” slowing down (Art. 3). The corresponding character- 
istic equation (80) therefore is used most successfully for moderators which approxi- 
mate this condition, i.e., for relatively heavy atoms such as carbon. 

6.6 Zero Slowing-down Length (One-group Theory) 

In this representation it is assumed that the fission neut,rons are born as thermal 
neutrons. It is a poor approximation for most cases; the “modified” one-group 
theory (see below) is a much better approximation of equal simplicity. 

Kernel: Pz(Ea,r,r’) = @(r - r’)S (81) 
Fourier transform: P,(E,,B*) = p 

Characteristic equation: 1 + L2BS = k 

6.6 Exponential Slowing-down Distribution (Two-group Theory) 

It is assumed that a fission neutron diffuses without change of energy and with a 
diffusion coefficient D, until a single (fictitious) slowing-down event occurs which 
reduces its energy to thermal in one jump. A cross section Z,f is assigned to specify 
the probability of the fictitious event per centimeter of travel, and a characteristic 
slowing-down length Lf is defined in analogy to the thermal diffusion length L: 

w 

. 
The diffusion kernels of Art. 2 apply to this picture (when multiplied by Z,r to give 
slowing-down density) : 

Kernel: Par(Es,r,r’) = ’ exp4$-~,~~~,,~ (&5) 

Fourier transform: I’,(E5,B2) = ’ 
1 + L,W 

G-36) 

Characteristic equation: (1 + L2B2)(1 + Lf*B2) = k (87) 

For the most useful applications of the two-group model, it is convenient to write 
the two coupled partial differential equations which, for this model, are equivalent 
to the asymptotic reactor equation (73): 

D, v*4/ - Y&f41 + ; L4a = 0 (88) 

D, v24a - Zm4s + 73&41 = 0 (89) 

t See Art. 3. 
: 6 is the Dirac delta. function, define 

and whose value at z = 0 is such that 

a function whose value is zero at all values of z except z = 0 

S(z) dz = 1. 
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In these equations the subscript s designates the thermal group of neutrons and the 
subscript f designates the fast group. 

These two equat.ions are simply the diffusion equations for the thermal flux 4. 
and the fast flux 4,. They are both satisfied by solutions of the wave equation 

v*4 + BZ4 = 0 

provided the solutions for 41 and 4. are so chosen as to preserve the relations between 
the fast and thermal fluxes as specified by Eq. (88) or (89); e.g., 

(see Art. 7). 

41 Zas + D,B= -= (90) 
4. PZaf 

Computation of the mean square slowing-down distance from the kernel [Eq. (85)l 
shows that it is just 6Lf2. Hence L/2 has the same significance in the two-group 
representation as the age 7 has in the Fermi age representation. Obviously, the two 
characteristic equations (80) and (81) will not predict the same criticality conditions 
for a given reactor if identical values are used for r and Lf2. Experience has shown 
that the two-group picture is the better approximation for hydrogen-moderated 
reactors and that reasonable agreement between experimental and calculated critical 
sizes for such reactors results if the measured value of the “age” or slowing-down 
area is used as the value for Lj*. For reactors moderated by relatively heavy materials 
such as graphite, the Fermi age picture is much the better approximation, and good 
results can be obtained in two-group calculations only if some adjustment is made 
on the value of Lf2. 

Despite its limitat.ions the two-group approximation is used extensively for multi- 
region calculations (e.g., reflected reactors) on many types of reactors because it is 
the simplest approximation which will give reasonably accurate results for such 
problems. When moderators other than those rich in hydrogen are involved, Lf2 is 
often considered as an adjustable quantity whose magnitude can be adjusted to 
compensate for the relatively poor description which the diffusion kernel gives of the 
slowing-down distribution. For example, if a reflected reactor is to be solved, a 
guess may first be made of the equivalent bare dimensions of the reactor (Art. 7.6), 
and the equivalent bare reactor may be solved by some approximation better than 
the two group. An adjustment may then be made in Liz to force the two-group 
calculation to give the same result for the equivalent bare,reactor, and this adjusted 
L,* may be used in the calculation of the reflected reactor. 

6.7 Modified One-group Theory 

If the left-hand side of Eq. (87) is expanded and the term in B4 is neglected, we 
obtain the characteristic equation for the modified one-group approximation: 

1 + (L2 + L,2)B2 = 1 + M2B2 = k (91) 

A similar result is obtained if the Fermi age equation (70) is expanded to terms of 
first order in ZP. The quantity BP= L2 + I;,2 (or L2 + 7) is called the migration 
area. 

6.8 The Multigroup Approximation 

In the multigroup representation treated here, the epithermal energy range is 
divided into a number of smaller energy intervals and all the epithermal neutrons are 
sorted into the same number of “groups ” according to the energy interval into which 
they fall at the instant considered. A neutron of a given group is considered to diffuse 
at constant energy until a slowing-down event occurs which slows it into the next 
lower group in one jump. Every neutron, during its lifetime, is considered to pass 
through every energy interval (for a more general multigroup representation, see 
Sec. 10). Evidently the two-group representation is the special case of the n-group 
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representation in which n = 2. For the n-group case we define n - 1 fictitious 
slowing-down cross sections 2,; which describe the probability of slowing from one 
group to the next and (n - 1) Li’s and 
diffusion constant Di for each group: 

xi’s which are related to the Z.,i and the average 

Li2 = _L = oi 
Xi2 Z& 

If we let i = 1 refer to the highest energy group, the slowing-down kernel into the 
nth (thermal) group is 

TYPO 1 

Gaussian (Fermi) 

Diffusion 

P,(E.,r~,rd = p /-“.. drz /Tw dr3 . . . /Tm &+I ex&-~~/r~;,;” 

X 
exp - xJrJ - r21 . . . exp - Kn-,lm - r,-,I 

4d2~r3 - rzl 4sL,-clr,. - r,-,I 
(93) 

where xi = l/L;. 

The Fourier transform of the kernel is 

Pmuw*) = (1 + L,2B2)(1 + L& . . (1 + L,-pfp) 

and the characteristic equation is 

n 

rI (1 + LizBy = k 

i=l 

where, it will be remembered, L,,* is just the thermal diffusion area La. 
The characteristic equation is thus an algebraic equation of degree n. If Ic > 1, 

there are always n - 1 complex or negative roots in addition to the one real, positive 
value for B2. In the case of a bare reactor, 
eliminated by the boundary conditions. 

the complex and negative roots are 

6.9 Convolution of Slowing-down Kernels; Synthetic Kernels 

Equation (93) is an exainple of a convolution of slowing-down kernels. If a kernel 
has the general form 

P(lr= - rll) = JdrzJdrt . . . Idr,+JPl(lrz - rll)l[P&, - r&l 
X Pdlr4 - r&l . . . [P,-l(lrn - rn-ll)l (94) 

it is said to be a convolution of the kernels PI, Pz, Pd. 
forms of these kernels are, respectively, PI(P), >;($, 

If the Fourier trans- 
. . . , P,,-l(B*), then the, 

Table 4. Kernels and Their Transforms 
CL’ and I have the anne meaning a8 in the discussion above; A is the mean free path) 

Transport 

Kernel 
P,(E,r,r’) 

Transform 
PdEP) 

I 
I +L'BI 

& tan-’ (XB) 

1 
v> 

..i 
-: 
cz 

.-t 

.; 

4 
.: 

;; 
_, 

A 
7: 

-..B 

.-<j 
1 

-: 

.̂  
: 

i 

-_ 

.- 

-I 

r 

_, 

: .~ 

7 
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transform of the convolution kernel P is simply the product 

P(B2) = [I”,(By][P2(B*)] . . [F,-,(B2)1 (95) 

Convolutions of kernels of the same or different types may be used to approximate 
the slowing-down distributions in various moderators. The three types of kernels 
which have been employed, with their transforms, are listed in Table 4. 

If a convolution kernel is arbitrarily constructed to fit the measured slowing-down 
distribution in a moderator without regard to the physical aspects of the slowing-down 
process, the result is often called a synthetic kernel. For example, the slowing-down 
distribution in H20 has been described by a convolution of four diffusion kernels 
whose characteristic lengths [Li, Eq. (92)] were arbitrarily chosen to fit the cxperi- 
mental measurements. 

6 SOLUTIONS OF THE WAVE EQUATION FOR HOMOGENEOUS 
BARE REACTORS 

As pointed out in Art. 5, solution of the critical reactor equation consists of finding 
a value of B2 which satisfies both the wave equation (74) and the characteristic 
equation (76). We consider here the solutions of the wave equation for homogeneous 
bare reactors. A one-dimensional (slab) and a three-dimensional (rectangular 
parallelepiped) case will be treated as examples. 

6.1 Infinite Slab 

For a chain-reacting slab, infinite in the y and z directions, the wave equation 
becomes 

If we t.ake the center plane of the slab as z = 0, the solution is 

+ = A cos Bx + C sin Bx 

where A and C are constants, to be chosen to.fit the boundary conditions. Since 4 
must be symmetrical about z = 0, the constant C must be zero, and the solution 

Ol p ACTUAL SLAB Tti~C~tdESsq 

Fm. 4. Solution of the wave equation for infinite bare slab. 

contains only the cosine term (Fig. 4). The boundary condition is 4 = 0 on the 
extrapolated boundary of the slab. This condition is met if the half thickness of the 
slab (a/2) is equal t,o r/2B or 3*/2B or 5x/28 _ . . ? etc, 
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Table 6. Solutions of the Wave Equation for Homogeneous Bare Reactors 

Reactor shape 

Slab; infinite in g 
and z direction 
thickness = a i 
z direction; con 
trzd plane at 
2=0 

Infinitely long 
cylinder of 
radius R 

Cylinder of radiur 
R, length H; ori 
gin of coordi. 
nate.7 at center 

Rectangular paral 
l&piped of 
sides = a, b. 
and e; origin of 
coordinates at 
center 

Sphere of radius li 

Extrnpc 
lated 

bound- 
aries 

r==R 

r=R 
PlZWS 

:=*; 

PlWXS 

PZ&!! 
2 

,=+; 

z-f; 

r=R 

Form of :-2+ $ BZ+ = , 
. 

2 + B%$ = 0 

s+;@<+;$ 
+m=o 

+Bv=c 

Solution 

+=Acos*Z 
a 

BZ e.z f 

+=A+$%) 

Bt _ (2.405)~ 

$=Ac-$J+$+ 

+=Ac~,s~~~X--u~~? 
a b c 

Critical dimensions 

,=2.405 
B 

(2.405)1 g+-iT;-=P 
[For minimum critical volume 

! 3 ‘9, H E ,.847R = ‘9, 

148 
YInin = F 

> 

f+;+f=Bt 

f For minimum critical volume \ 

R=-* 
B 

4 474 I30 
Vcrit=~rR3=~=~ 

all 
When the condition is added that the flux shall not be negative anywhere in the slab, 
conditions are satisfied only by a slab of extrapolated half thickness a/2 = s/2B. 

Thus the multiplying slab is critical if its extrapolated thickness a is just equal to 
x/B, where B is the solution of the characteristic equation (76).t ‘The neutron flux 
will be constant in time, and its spatial distribution will be given by 

. 

+ = +a, cos Br = +a cos 2, 
a 

where @JO is the arbitrary value of the flux at z = 0, the center plane of the slab. 

6.2 Rectangular Parallelepiped 

The expanded form of the wave equation is 

$$ + 3 + 2 + B2+ = 0 

t The physically meaningful expressions forP,(E,B*) have such form that the characteristic equation 
has a single solution for Bt which is real and positive. Negative roots may, however, be present. In 
slab geometry they lead to solutions of the wave equation involving sinh and oosh (or exponential) 
terms. In the case of the single-region reactor these solutions are eliminated by the boundsry condi- 
tions. either because they cannot be made to go to zero at the reactor boundary or because they give 
discontinuities in neutron current at the center of the reactor. 
in the case of a multiregion reactor (see, for example, Art. 7). 

These arguments do not hold. however. 
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If the origin of coordinates is taken at the center of the parallelepiped, the sym- 
metric solution is 

where (cf. Art. 2.26) 
l#J = 40 co9 K=X cos Kyy cos Kd 

Kr2 + KY* + K,2 = 232 

Note that the solution is just a product of three slab solutions. This possibility of 
separating the solution into independent geometrical components is characteristic of 
bare reactors. 

If the extrapolated dimensions of the parallelepiped are a, b, c in the 2, y, and z 
directions, respectively, 

VT2 K22 cc - 79 2=- 79 
a2 KY b2 

KS2 = - 
C2 

and the reactor is critical if the dimensions arc such that 

79 79 79 
>+F+z=B2 

Thus, t,he reactor can be made critical by proper adjustment of any one of the dimen- 
sions, the other two being fixed arbitrarily provided they exceed a certain minimum 
value (the value for which the third must become infinite). 

6.3 Other Shapes 

Table 5 gives the expanded form of the wave equation, its solution, and the critical 
dimensions for bare homogeneous reactors of various shapes. 

6.4 The Absolute Value of the Thermal-neutron Flux 

This value in a thermal reactor is given by 

CfJ = 1.035 x 1O’J A .JL 
a/E MJ 

(96) 

where 6 = average thermal flux over the reactor core volume 
A = atomic weight of fissionable material in reactor 
8J = microscopic fission cross section of fissionable material, averaged over 

thermal energy spectrum, barns 
E = average energy liberation per fission, Mev 

P/M, = ratio of operating power of reactor to fissionable material content of the 
reactor, watts/g or kw/kg 

If the fissionable isotope is W5, and if 8, is taken, roughly, as 500 barns and E as 
200 Mev,t 

P 
4 L 24 x lO*O-- . . 

MJ 
(97) 

For an effectively homogeneous reactor the above expressions give the average 
flux over the core volume. For a lumped reactor they give the average thermal flux 
in the fuel. 

6.6 The Absolute Value of the Fast-neutron Flux 

This value in a reactor is not often a very useful concept, since the total fast flux 
includes neutrons of such widely varying energies. For rough estimates the value 
of the two-group fast-neutron flux may be used. In a bare reactor (or far from the 

t This value is only an approximate one. If an accurate value is required, it must be evaluated for 
the apeoific reactor in question, taking into account the leakage of neutrinos and some y and neutron 
energy from the reactor, as well as the production of extra energy by the nonfission absorption of 
neutrons. Typical values lie between 190 and 200 Mev. 

i 

I 
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reflector in a large reflected reactor) the two-group fast flux is everywhere propor- 
tional to the thermal flux in the ratio 

br k &* 1 -=-- 
6 pZx/ 1 +LIZBZ 

(98) 

where Z, is the macro&opic thermal absorption cross section, Lpis the slowing-down 
area, B2 is the geometric buckling, and 2 
(=D//W. 

o~ is the fictitious slowingdown cross section 

Although this equation is convenient to use, since the absolute value of +. is usually 
known, a more straightforward expression for +/ is 

~, = y x No. fiesions/(cm3)(sec) 

z,r(l + -VW 

Thus, although the thermal flux depends on the specific power (power per unit mass 
of fissionable isotope), the fast flux depends only upon the number of fission neutrons 
produced per unit volume per second, the slowing-down cross section, and the fast 
leakage l/(1 + L,*B*). 

6.6 The Fractional Leakage (2) of Neutrons 

This value from a critical reactor is given by 

d:= 
No. neutrons leaking/set k-l 

No. fission neutrons born/see = k 

For a bare thermal reactor, if it is assumed that the leakage of neutrons in the energy 
interval between resonance absorption and thermal can be neglected, the leakage can 
be divided into fast and thermal components (see Art. 5): 

No. fast neutrons leaking/set - 

No. fission neutrons born/set 
= 1 - 2 (E.,B2) 

= 1 _ e-rll= for Fermi slowing down 
LpB2 

= 1 + L,aBz 
for “two-group” slowing down (100) 

No. thermal neutrons leaking/set 
No. fission neutrons born/set 

= ~P,(E,B~) 
1 + L2B2 (101) 

A further useful leakage relation is 

No. thermal neutrons leaking/see = L2Bz 
No. thermal neutrons sbsorbed/sec (102) 

7 REFLECTED REACTORS 

A reflector is ordinarily a mass of material having k <I, which is placed around 
the outside of the multiplying core of the reactor to reduce the leakage of neutrons 
out of the core. This reduction of leakage has the two advantageous effects of 
reducing the quantity of fissionable material required for criticality and of causing 
more nearly uniform flux and power distributions in the reactor core. The most 
effective reflector material will be that which has the largest albedo for neutrons of the 
energy-distribution characteristic of the reactor in question. 
made of moderating material. 

The reflector is often 
In this case it returns neutrons to the reactor core at 

considerably reduced energies and modifies the energy spectrum near the core- 
reflector boundary. 

Except in the special case for which the diffusion properties of the core and reflector 
are identical for all epithermal energies, reflected reactors can be solved only by one 

. 
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Table 6. Definitions and Symbols Used in Arts. 7 and 8 
--._-. 

Dimensions: 
T. RI. RI. a. b = Dimensions of reactor regions. See Figs. 4 to 9. 

Variables: 
p = Dimensional variable of flux distributions; measured from inner dimension of each 

region in a slab, measured from center of core for cylinder and sphere 
{ = Vector whose four components are. in order, fast flux, thermal flux, negative fast 

ourrent, and negative thermal current at an internal boundary 
M, N. V, W. X = Functional values of flux distributions 

A, B, C, E = Numerical coefficients 
Characteristic constants of the reactor: 

k = Multiplication constant in the core material 
u) = For any region, the contribution of the leakage from unreflected boundaries of the 

region to the total buckling 
= (*/a)’ for an unreflected slab of thickness a 
= (2.405/R)’ for an unr&cLed cylinder of radius R 

x,2 = Reciprocal of slowing-down ares. = I /LIZ 
x12 = Reciprocal of diffusion area = I/LS 

JAI = 4x12 + 212 
I- 

ps = t’x,* + u= 
2‘. I Macroscopic thermal abm-ption crms section 
Br = Mscroscooic slowine-down cross section = Df/Lrz 
D. = Diffusionboefficient for thermal neutrons 
D, E Diffusion coefficient for fast neutrons 
B2 = Material buckling of sny region 

BIZ E “Fundamental” buckling in the core, 

-)$(x,, + x8*) + )d d/(x,’ + x.92 + 4dd(k - ‘1 
B,‘l = “Transient” buckling in the core, 

-$6(x/l + w.2) - $6 d/x,, + x.92 + 4xPd(k - I) 

1 = .\/B,a - u= 

m = d---B1’2 + ~2 
s = Coupling coefficient between fast and thermal fluxes = (2, + DaB*)/Zy in general 

S = (2. + DsB19l21 
s’ = (& + DaB1’2),Z, In t11e core 1. 
s=o 

,y = p, + Dax,z) ,2,} i* the refleCtor 

Mat&es: 
Q = 4 x 2 matrix constructed for the outer reflector 

Y, = 4 x 4 matrix constructed for the nth intermediate region 
Y c,,Ie = 2 x 4 matrix constructed for the core 

Subscripts: 
f = Denotes fast group of neutrons 
s = Denotes thermal group of neutrons 

of the group methods. This is because other descriptions of the slowing-down dis- 
tribution provide no means for matching the neutron fluxes and currents at the core- 
reflector boundary over the epithermal energy distribution. In this and the following 
sections the two-group formulation will be used. The treatment for larger numbers of 
groups is similar but usually becomes too cumbersome for hand computation. 

The mathematical treatment is similar for the various geometrical cases of reactors 
reflected in one dimension. One of these will be presented in some detail (Art. 7.1). 
In the other cases only the final equations will be given (Arts. 7.2 through 7.4). 

7.1 Cylinder of Finite Length with Radial Reflector (Fig. 5) 

This case will be worked out in some detail to illustrate the method. The reflector 
has k = 0. 

The diffusion equations for the fast and thermal-neutron fluxes have been given 
previously [Eqs. (88) and 89)]. To minimize the complexity of the notation in the 
following treatment, some of the subscripts will be omitted and Eqs. (88) and (89) 
will be written as 

Dt Wv - z/h -I- kW, = 0 (103) 
D, ~*$a - 2,+, - Z,h = 0 (104) 
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It is to be understood that Ba in these equations designates the thermal absorption 
cross section and 21 the fictitious fast absorption cross section (see Table 6 for a 
complete list of the notation used in Sets. 7 and 8). 
and (104) that resonance absorption is negligible. 

It has been assumed in Eqs. (103) 

included as indicated in Eqs. (88) and (89). 
If this is not the case p can be 

In the core, k > 1 for a critical reactor; in the reflector, k = 0. In either case. 
the solutions are the solutions of the wave 
equations 

v2& + B2; = 0 (106j 

the solutions being coupled by the condi- 
tion that the relation between fast and 
thermal flux, as defined by Eq. (104) 
[or, alternatively, by Eq. (103)], must be 
preserved: 

8 = & = 2. -I- DaB2 
4s 21 

(107) 

~+....~ ( 

FIG. 5. 1+E 
Ha2 

and the solutions being further restricted 
by the requirement that the characteristic 
equation be satisfied: 

) (1 +5> - k = 0 UW 

This characteristic equation is a quadratic in Be, which defines two values of B* (B* and 
W) in each region. In the core, which will be characterized by the subscript 1, 

B1? = -h2 + d) + + x~a~)~ + 4~~~/%2(k - 1) 
2 

(109) 

B1’2 = -bd + x*2) - dt/(Jw2 + XI,“)2 + 4X,/%.V - 1) 
2 

(110) 

In the reflector, which will be characterized by the subscript ‘2, 

Bg= = --ma2 (111) 
&‘2 = -7d (112) 

If it is assumed that the wave equation is separable in both core and reflector, so 
that the solutions are the products of independent functions of z and r, then the 
solution for each flux (fast and thermal) in each region (core and reflector) is of the 
form 

q5 = cos ; F(T) (113) 

where F(r) is the solution of the equation 

Since there are two values of Be in both core and reflector [Eqs. (109) to (112)], a 
total of four equations of this type must be satisfied to define each F completely in both 
rcaions. thus: 

dV’,t drZ +;%+PF,f =o 

I 

(115) 
core . 

m2Fr/ = 0 (116) 
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% f; % - p/lF,t = 0 
reflector 

!t?$ + 5 ‘2 - ps2F2, = 0 018) 

with identical equations for FI, and F2a. In the above equations the signs of the 
constants 12, m2, P,2, and ~~2 are so chosen that the constants themselves are inherently 
positive: 

a 2 
l= = B1a - E 0 

(119) 

-,a = B1’2 - 1 
0 

2 

H 
uw 

-.-tip = -pQ,2 - x 2 
0 z 

(121) 

(122) 

In the core, the complete solutions for the fast and thermal fluxes are the sums of those 
solutions of Eqs. (115) and (116) which are finite for r = 0: 

F1, = AJ&) + CZo(mr) (123 
Fir = A&J&) + C&‘Z0(mr) (124) 

In the reflector the solutions for fast and thermal fluxes are the sums of the solutions 
of Eqs. (117) and (118). 

Fta = El&r) + G~o(r.~) + HZoGtr) + ~~o(PJ~) (125) 
Fz, = S2EZ,(ps~) + &GK&r) + Sn’Hl&/r) + Sr’MK&r) = Sz’Hlo(w) 

+ Sz’J’fKo(w) (126) 

In these equations, A, C, E, G, H, and M are constants to be determined by the 
boundary conditions and Sr, Si’, Sz, and 82’ are the coupling coefficients [Eq. (107)] 
appropriate to the region under consideration and the value of B2: 

s 
1 

= &s + D,Jh2 
(127) 

Zlf 
sl, = &a + D,,BI’~ (128) 

ZlJ 

& = 2% - Dwd = 0 (129) 
22J 

sz, = 228 - DWZJ’ 
(130) 

22J 

Equations (123) to (126) contain six undetermined coefficients (A, C, E, G, H, and 2ci). 
Five of these, plus the criticality condition, are determined by the following six 
boundary conditions: 

FzJ(%) = 0 (131) 
F*.(R2) = 0 
FIJ(RI) = FZJ@I) 
FdR,) = F&RI) (134) 

D,J % (RI) = D~J 2 (RI) (135) 

D1, $ (R,) = Dz, ‘2 (R,) (136) 
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Applying conditions (131) and (132) to Eqs. (125) and (126) there result 

EZ,(p,R2) + GKo(p.R2) + HZO(~JR~) + MK&JRZ) = 0 
S~‘HZ,(HJR~) + S~‘ikfKo(p~R~) = 0 

E-+!$ 
0 * 2 

(137) 

(138) 

Using these relations, and applying conditions (133) to (136) to Eqs. (123) to (126), 
the four simultaneous equations result: 

AJdRl) + CZdmRd + G [w Zo(paR1) - K~(~.R~)] 

.M[W ~ObJ%) - &O(PJnl)] = 0 (1%) 

ASIJOWI) + CSI’JO(VZRI) + Sz’M [ $$J$$ Io(~JR,) - K,(~JR,)] = 0 (140) 

D1.AIJI(lRI) - Dr,CmZr(mRr) - DzapsG [ $$$$/ Z1(p,RI) + K,(~.R,)] 

- DSGJM m ~I(,,%) + K,(PJR,)] = 0 (141) 
0 2 

Dl~ASllJl(lRt) - Lh&‘&‘mZ~(mRd 

- &‘D2JpJM C KobJR2) m hb~Rd -t K&J%) = 0 (142) 1 
These four linear homogeneous equations, of the form 

h-4 + kd + knG + k,,M = 0 
kd + k,zC + kx$G + ktaM = 0 
kd + kd’ + kuG + krrM = 0 

(143) 

LA + k,zC + k,aG + kraM = 0 

will have a nontrivial solution for A, C, G, and M provided the determinant 

1 knkwhk~~ / 

(144) 

1 kwLh&,, / 

Physically, this condition is the condition of criticality for the reactor. In general 
for an arbitrary choice of reactor characteristics, the determinant will have some 
nonzero value. A practical method for finding a condition of criticality is to compute 
the value of the determinant D for a number of different values of one of the reactor 
characteristics (usually RI, H, k, or uranium density), to plot the value of D as a 
function of the value of the variable characteristic, and thus graphically to determine 
the value of the characteristic for which D = 0. 

Once the condition of criticality has been established, the set of equations (143) 
defines the relationships among the constants A, C, G, and M. If one of the constants 
(most conveniently, A) is set arbitrarily, the remaining three may be determined in 
terms of it by three of the equations (143), and the constants E and H can be specified 
in the same terms by Eqs. (137) and (138). Substitution of these values into Eqs. 
(123) to (126) specifies the thermal and epithermal flux in the core and reflector, 
except for an arbitrary multiplier. This multiplier, which specifies the absolute 
level of the flux, can be determined if the power at which the reactor is operating is 
known (see Art. 6.4). 
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7.2 Finite Cylinder Reflected on the Ends (Fig. 6) 

The fluxes are given by 

+a = Jo 2* F,(z) 

+t = Jo 7 F,(z) 

where F, and F, are given by equations of the form 

which have the solutions 

Fls = A cos 1% + C cash mz 
F1, = &A cos 1~ + &‘C cash mz 
F*a = E cash & + G cash ~5 
Fz, = &‘G cash rfZ 

(145) 

046) 

(147) 

048) 

where 

(4 

(149) 
-p,a = --X2,2 - 

2.405 2 

R 

The coefficients A, C, E, and G are related by the equations 

A cos F + C cash y - E cash /.isT - G cash ,ufr = 9 

s,A cos 7 + &‘C cash y - Sg’G cash WT = 9 
(150) 

. 
-lDIJ sin F + mD,,C sinh y + p8Dz,E sinh p,T f pfDz..G sinh PIT = 0 

--D&A sin F + mD,$,‘C sinh y + ~~D&‘z’G sinh P/T = 0 

FIG. 6. 

L-a- 
FIG. 7. 

The methods used for Eqs. (139) through (142) can be applied to these equations to 
find the condition of criticality and to determine three of the four coefficients A, 
C, E, and G. 



6-66 REACTOR PHYSICS [SEC. 6 

7.3 Rectangular Parallelepiped Reflected on Two Opposite Faces (Fig. 7) 

The fluxes are given by 

+. = cos f COY y F,(z) (151) 

q5, = cos % cos y FJ(Z) 

where F, and F, are given by equations of the form 

!!$ + [Bz - (;)* - (;)“I F = 0 

(152) 

(153) 

The solutions for F are the same as those given in Eqs. (148) above, and the equations 
which determine the coefficients and the criticality condition are Eqs. (150) above, 
with the following changes in the definition of symbols: 

12 = ~~2 - (T!)’ _ (i)’ -m2 = B,‘2 - (z)’ - (a)’ 

-p,2 = --x,2 - (;)’ _ (;)? -/&2 = - %*? - @’ - ($ u54) 

7.4 Reflected Sphere (Fig. 8) 

The fluxes are given by 

+r. = 5 (A sin Blr + C sinh Bl’r) 

+r/ = i (SIA sin Blr + SI’C sinh Bl’r) 

(155) 
+za = ;’ [E(cosh XJ - coth x,Rs sinh XJ) + H(cosh x/r - coth XJR~ sinh KJT)] 

&J = $ H(cosh HIT - coth XJR~ sinh NJT) 

FIG. 8. 

1 REGION 2 1 REGION I 

I 

I 

FIG. 9. 
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and the coefficients A, C, E, H are related by the equations 

A sin BIRt + C sinh B1’RI + E(coth II& sinh x.Rl - cash x,X,) 
+ H(coth tcrR2 sinh XJR~ - cash XJR,) = 0 

AS, sin BIRl + C&’ sinh Bl’Rl + HS?‘(coth 7fJiZr sinh ,r,JZr - cash PL,~~) = 0 

AD,, B1 cos BIRl - $ sin BIR,) + CDL, (B,’ cash Bl’Rl - & sinh BI’R,) 

+ E&s ( x8 coth x,Rz cash x,R1 - 11. sinh xsRl 

1 -- 
RI 

coth x8& sinh x,R, + -?- cash 
RI 

x,R, 
> 

+ HDs. w J coth x JR, cash xfRl - x J sinh x JR, 

1 
(156) -- coth XJR~ sinh >cjRl + 1 cash XJR~ 

RI 
= 0 

RI 

ADIJ &Bl cos B,R, - $ S1 sin BlRl 
1 1 

+ CDIJ 
( 

S1’B1’ cash B,‘Rl - k Sr’ sinh B,‘R, 
1 > 

+ HDZJ 
( 

S~'XJ coth xfRr cash XJR~ - Sz’x, sinh xfRl 

82’ S2’ -- coth x/R* sinh x/R, + - cash XJR~ = 0 
RI RI > 

and again, these equations may be used to determine the criticality condition and to 
fix three of the coefficients, as in the case of Eqs. (139) through (142). 

-7.6 Bare Cylindrical Reactor Containing Central “Reflector” or Absorber (Fig. 9) 

This case occurs in computing the effects of centrally located control elements or 
sometimes in computing the effects of experiments inserted in the reactor. The 
quantity k, is assumed to be <l, but for tho sake of generality is not taken to be 
necessarily zero. 

The fluxes are given by 

c$. = cos z F.(r) 

$J = COS~FJ(T) 

where F. and F, are given by equat,ions of the form 

and B2 has two values for each geometrical region: 

B12 = -(Hlj2 + X18? + (XlJ' + X1.2)2 + 4?1~,27,,d”(k, - 1) 

&‘a = -(XlJ’ + XI,‘) - ,bJ’+ HI.*)’ f 4X,J2X,,2(k~ - 1) 
2 

(157) 

(158) 

(1.59) 
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B,z = -(.‘(*J2 + h*) + 2/(X2/2 + X2,*)* + 4X2J2X2.2(k2 - 1) 
2 

&‘* = -h2 + x2,‘) - 2/(X?,* + H.‘a*)’ + 4X*J*X*,*(k* - 1) 
0 

The quantities l*, m*, pJa, and p,* are defined as 

12 = B1l - .?? ’ 
0 

1 
H 

em2 = B,‘z - 

1 
--L(s2 = &2 - 

2 
-pJ2 rz &‘* - 

The solutions of the four equations of the form (158) arc, then, 

FIN = AJo + CYo(Zr) + Elo(mr) + GKe(mr) 
FII = ShlJo(lr) + CY&)] + Sl’[EIo(mr) + GK,(mr)] 
Fza = H~o(,KJ) + MZo(p,r) 

where 
F*J = S*HIo(&T) + S*‘~~&J~) 

s1 = &a + Dd31~ 

211 

s,, = L + D,.BI’~ 

=lJ 
s2 = Zs - DAL* 

&J 

Applying the boundary conditions 

Sz’ = 
22s - DT,R~‘= 

z*/ 

FlJ(&) = 0 
F~J(R*) = Fz/(Rt) 

F,.(Rd = 0 
Fl,(R,) = Fz.(&) 

D,J 2 (Rz) = DZJ 5 (%I D1. ‘2 (R,) = Dts F (Rz) 

the constants A and E can be evaluated in terms of C and G, respectively 

A=-+!@& 
0 1 

E=-&k!& 

and the remaining constants C, G, H, and M are related by the equations 

C 
[ 

- $$!$ Ju(IRz) + Y&L)] + G [ KdmRd - $$$ I,(mR,)] 

- Hlo(,u,Rz) - Ml,(p,R,) = 0 

SIC 
C 

- Jw Jo(~Rz) + Y,(~RI)] + SL’G [ &(m&) - $$$ Io(mR*)] 

- SzHZo(,i.Rz) - &‘hf~&‘Jr) = 0 

DIE 1 g J,(lR,) - lY,(lRt)] 
[ 

+ D,,G -mK,(mR*) - 
r 

m s I,(mR*)] 

- Ddffd~(~&)‘-f- MPJ~,(P,R*)] = 0 

J~(lRzl - WR,)] 

i- &‘&G [ -mKl(mR,) - m w ZI(mR*)] 

- Dz~h.Y*ffd,(~sR~) + S~‘M~JI,(PJR~)] = 0 

(If.33 

(161) 

(162) 

(163) 

(164) 

(165) 

066) 
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The criticality condition can be determined and three of the constants can be 
evaluated from these four relations as explained in the case of Eqs. (139) through (142). 

If the central region is a control rod, it is usually black to thermal neutrons, and 
the boundary condition on the thermal flux in region 1 is 

1 - ds! (R,) = t 
AI(RZ) dr 

where t is the extrapolation distance for thermal neutrons (see Art. 2.7). Often the 
rod material is a poor moderator, and a suitable boundary condit,ion on the fast flux is 

+ (R2) = 0 

When these conditions hold, the two constants C and G, which must be evaluated to 
describe the flux distribution in region 1, are determined by 

1 
CI $f$$ J~(LR,) - ww] - Gm [ 

[ 
-= 
c c 

[ 
- s ~o(lRz) + Yo(W] - G [ 

and 

m zI(m~n) + KdM] 
w Zo(mRz) - KdmRd] 

(167) 

s I,(rn&) + Kl(mRz)] = o SlCl $fj!$ Jl(ZR2) - Y~(~R,)] - SI’Gm 
I [. 

7.6 The Reflector Saving 

Given a reflected reactor known to be critical (either by calculation or experiment) 
whose core has dimensions a, b, and c in some coordinate system whose directions are 
specified by 01, 8, y, we remove the reflector which extends in, say, the (2 direction and 
determine (by either calculation or experiment) how far the bare core would have to 
be extended in the a! direction to achieve criticality. If this critical dimension of the 
bare core is a’, then we define the reflector saving in the OL direction as a’ - a. The 
dimension a’ is called the equivalent bare dimension of the reactor. 

If the reflector saving for a given core-reflector combination is known, the criticality 
calculations for the reactor can be made as though the reactor were bare, using the 
reflector saving in place of the usual extrapolation distance. 

The value of the reflector saving is often relatively insensitive to changes in some 
of the important characteristics of the core. Furthermore, in many practical cases 
the reflector saving is a relatively small fraction of the equivalent bare dimension. 
These considerations make the reflector-saving concept a very useful one in practical 
reactor calculations. For example, if calculations are to be made over a wide range 
of reactor variables for design optimization, reflector savings can be calculated for 
only a few conditions and values for the remainder can be interpolated. 

7.7 Reactors Reflected in More than One Dimension 

There is no analytical solution for the reactor reflected in more than one dimension, 
although numerical methods (e.g., the relaxation methods) are possible. The usual 
method for practical calculations is to assume that the reflector saving in any given 
dimension is the same as that which would result if the reactor were bare and of the 
equivalent bare size in the other dimensions. Thus, for a three-dimensional problem 
one guesses first an equivalent bare value for each of two dimensions and solves the 
actual reflected case in the third dimension, thus determining the equivalent bare 
value for that dimension. The same process is applied in turn to each dimension, 
using the “correct” values for the equivalent bare dimensions as they are deter- 
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mined and guessed values when necessary. After a calculated result has been obtained 
for the equivalent bare value in each dimension, criticality can be determined by the 
bare reactor solutions. If, as the calculation proceeds, it is evident that some of the 
guesses made were very poor, it may be advisable to repeat the calculations using the 
improved values for the equivalent bare dimensions. Experience has shown that, 
as would be expected, this method gives accurate results for reasonably large reactors 
having reflector savings which are not large fractions of the equivalent bare dimensions. 

An alternate method can be used if the core is of a compact shape and is identically 
reflected on all sides. The core and reflector are replaced by spherical regions of 
the same materials and of roughly the same geometrical buckling. The reflector 
saving is computed for this spherical assembly, and it is then assumed that the same 
reflector saving will apply to each dimension of the actual core-reflector assembly. 
This method involves less computation than the preceding and may give more 
accurate results if the reflector saving is a large fraction of the equivalent bare 
dimension. 

8 MATRIX SOLUTIONS FOR REFLECTED REACTORS 

By Otto Schulze 

The problem of the two-group reactor reflected in one dimension, which was treated 
in Art. 7, can also be solved by the application of matrix algebra. The results obtained 
can also be applied approximately to reactors reflected in more than one dimension 
by the same schemes outlined in Art. 7. 

R, FOR INTERMEDIATE 
REFLECTOR; R, FOR 
OUTER REFLECTOR 

R2 FOR OUTER 
REFLECTOR 

SLAB GEOMETRY CYLINDRICAL OR SPHERICAL GEOMETRY 

Fro. 10. Notation for multiple-reflector problems. 

The matrix solutions are particularly useful for reflectors which consist of more 
than one region (Fig. lo), all of which are hem assumed to be nonmultiplying. They 
were originally described by Garabedian and Householder (MonP-246) and were 
reduced to a straightforward computational procedure by Spinrad and Kurath.i 
The symbols used here are the same as those of Art. 7 (see Table 6). 

8.1 General Procedure for Calculating Criticality 

For each region there is a matrix whose elements are determined by the two-group 
constants and the dimensions of the region. For the outermost reflector the matrix 
is called the & matrix. It has a simple form because the fluxes vanish at the outer 
(extrapolated) boundary. Bar each intermediate region n there is a matrix desig- 
nated Y,, while the matrix for the core region is symbolized by Y,,,,. 

t This section is B condensntion of Ref. 11. The report oontains form sheets which we very useful 
if extensive computntions are to be made. 
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After all the elements of all the matrices have been determined, one proceeds from 

the outer reflector through the intermediate regions in consecutive order to the core 
region, forming the product first of the outer reflector Q matrix multiplied into the Y, 
matrix of the adjacent intermediate region. This product is then multiplied into 
the Y, matrix of the next intermediate region, and so on, until finally a product is 
formed with the Y,,,, matrix. This final product is a 2 X 2 matrix. The critical 
condition is that the determinant of this final matrix be zero. 

Criticality can be achieved either by varying a particular parameter (for instance, 
the dimension of the core) until the value of the determinant is reduced to zero or 
(as is more convenient if the nuclear constants, i.e., fuel loading, are to be varied) 
by setting the determinant equal to zero and solving for one of the functions I tan (U), 
Z(J&r)/J1(Zr)], or I cot (Zr) (depending upon whether the geometry is a slab, cylinder, 
or sphere). In this notation I is the square root of the partial buckling. 
1, one can obtain the value of the total buckling B12. 

Knowing 
If i?r2 is not the same as the 

test value, one iterates, using the new solution as a test value, repeating this process 
until convergence is obtained. The procedure is demonstrated in Art. 11.7. 

8.2 The Q Matrix (Outer Reflector) 

where 

Slab 

tanh ~2 
dd = ~ 

P 

& n(w) 

!?(P/,Ps) 

Sphere Cylinder 

1 _ &GR2)zo(PR1)- 
FI 1 Ka(Pnl) Kowwo(PR2) -~ 

1 + PR, cot11 j@, - FL) P &(/A) 1 + ZWPR~)~I~RI) 

KtWdZo(&)~ 

and drr,r.) = & L?(w) - !&)I 

8.3 The Y, Matrix (for Any Intermediate Region n) 

where 

Slab 

x,(~) = cash /.L” 

sinh pT 
X2(P) = - 

P 

X,(P) = p sinh rT 

x4Cr) = cash PT 

Sphere Cylinder 

co& r(R2 - RI) + 5 sinh r@z - RI) 
1 

sinh p(Z?, - RI) 

P 

zlx [p(R* - R,) cash P(RZ - RI) 

+ (p2RlRc - 1) sinh p(R2 - RJI 

CO& p(Rz - RI) - & sinh r(Rz - RI) 

PRI[ZO(PRZ)KI(PR~ 
+ Ko~RP)ZIW~I 

R,[Z&&VLI~.&) 
- Ko(rRn)~o(~Rdl 

P~RIVI(&!KI(P&, 
- KI~&)ZIGRI)I 

r%[Z,(r&)&(/.&) 
+ K,(dL)~ddL)l 
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and 
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8.4 The YO,, Matrix (for the Core Region) 

Y c.are = 

where 
Slab 

X&C Ztan4-T 
2 

Xc Cm) tanh 7 m coth mR1 - $ m 11 WV 
1 Zo(mRd 

8.6 General Procedure for Determining Flux Distributions 

1 1 

1 1 

s F 

-D,X,(Z) Df-&h) 

-D,XdO ZLUm) ~ ___ 
s As’ 

Sphere Cylinder 

Z cot ZR, - L 
Rl 

z JIMI) 
Jo(ZR,) 

[SEC. 6 

After the critical condition has been achieved, the distribution of the fast and 
thermal fluxes may be obtained. Starting with the core the constant A’ is calculated 
from the ratio of the elements of the critical determinant; the other coefficients are 
stated in terms of A’. 

A vector r which represents, in order, the fast and thermal fluxes and the negative 
currents at the boundary of the core is then obtained. These values of the fluxes 
and currents are used in calculating the coefficients of the next region. The super- 
script i - 1 designates that the outer edge values from the previous region are to 
be used. 

One proceeds through the various intermediate regions in order and finally to the 
outer reflector. Here the boundary values from the previous region form an over- 
determined system for obtaining the fluxes and afford a check on the final result. 

Core: 

M(b) 

Distribution 

@v(p) = MOPI + AN(w) 

A(P) = z VP) + AFy h) 

Slab Sphere Cylinder 

CO6 zp 
sin Zp 

. Jo(b) 
P 

N(m) cash mp 
sinh mp 

Z0(m) 
P 

A 
A’ cos (ZT/2) A’ sin ZR, A’Jo(ZRd 
=h(mT/2) sinh mR1 ZdmRd 
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where A’ is obtained from 

&Yam = ; 1 
I I 

with 

or 

A’= -% 

A’=--C 
d 

(check) 

6-73 

The outer edge values of the fluxes and currents are obtained from the matrix product; 
e.g., 

IIYcoreII 1 rYzR*) 1 = llrll = ;; 

/ J, 

Intermediate Region: 

@f(p) = AV(w) + BWhp) 

h(P) = + @I(P) + CV(PaP) + EW(lr,P) 

I Slab 

p meas. . 
wed 

V(w) cash pp from 
inner 

W(w) sinh pp edge 
of re. 
gion 

A *,i-r 

c +,i-* - 1 ,#,p-* 
S’ 

i 
- J.‘Y J/‘-I 

p.D. S’p.D, 

- 

-. 

-. 

-. 

-. 

- 

Sphere Cylinder 

cash N(P - RI) 

P 

I 

P measured IO(W) 

sinh &I - RI) 
from center P measured from axis of reactor 
of reactor K&w) 

P 

R,g,‘-’ r/K~(,a,R~)+/‘-’ + z Ko(w/Rd 1 
“::$;’ I -$I’-’ 

P, 
/a/I~(,~/Rl).#a/i--l - F lo(r,R~) 1 

R, (&i-1 - f +,‘-I) RI [ /oK~(r.Rd (6-l - h d,‘-‘) 

+( 
J,‘-I - D, s,D, J,i-1) z!?gq 

,#,,i-1 - I ,#,,‘?I 
S’ 

RL [ rJ,(rraRd ( @P1 - f W) 

> 

The outer values of fluxes and currents arc obtained from the matrix product df 
IIY II llrll (previous region) = IICI = [I J”; 

J. 



outer Reflector: 

4,(P) = AX6.w) 
1 

4*(P) = s, 4j/(P) + BXhP) 

Slab Sphere Cylinder 

-~bd 
sinh r(T - p) p is measured from inner sinh ,u(Rz - p) 

Q) edge of region I) 
Ia - 

1 sinh @/(RI - RL) 
-, 

Io(r,Rd - IIo(PIZW /Ko(r/Rdl~drrRd 

-(R,/D/)J/i-’ 
---.- -----------_._-.-.._____________________----~- 

J,‘-1 

(I /RI) sinh c~(Rt - RI) + PI coah M,(RI - RI) r/D,Ii(r~Rd + [Io(rrRi) lKo(r/Rt)lK~(,.,Rd 

Q-1 - (I /S’)&.,i-1 
--------- 

9.‘-’ - (I/S’)+/‘-’ 

(I /RI) sin11 r.(Rs - RI) Zo(r.Rd - IZo(r.Rr)/Ko(r.Rz)lKo(rrZl~) 

(-R,lD.)Jd- + (R,/S’D,)J/‘-’ 
- ----------------..---..----------..~-~--~----- 

-..--- 
J,i-1 - (D./S’D,)J,i-1 

(I /RI) sinh dZIz - RI) + P, oosh p,(R, - RI) r.D.l~l(cr.Rd + IZO(~.RZ)IKDG,RZ)IKI(~~~RI) I 

A 
1 sz,r 

A (check) -J/‘-I 

,A,D/ cash p/T 

B 
$d- - (I /is’)+/+1 ~__- 

sinh a.T 
---_______ -_ _.._. I _ 

B (check) 
-Jai-’ + (D./S’D,) J,i-1 

POD. cash p.T 

g&j&&,,, ,.b .f i e.,, " ' 1 ,I II 1, ,.,, ,,,, .&:d,hi~Lri.,~~, i',,, ',: * " I,, ,:,A, ! :i :~‘..b:,;~.~. .,d~ !,,,’ ,,I ,;: I:[. Y,, ,I.:!# .:,!,/!,~ ,,/ i, ,.,&.,.L.%,1 I,, /V/S, :1_, /,‘, ,o i:.“i,‘.‘lC!.~~~, 
;,/ 

/ , ,,i(’ ,I,,? ,’ ,‘! ,,: ‘!,, : ‘_ !., ,, ,I,>, :,:, i, I ,, ‘:.,-jr’,‘,, ,’ ,‘.: ,, ’ ‘i’,.,I ,S’.,‘! ‘,f;, ..,,& 
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9 EVALUATION OF MATERIAL CONSTANTS OF THE REACTOR 

Ry Otto Schulze and J. R. Dietrich 

In order to set up the reactor equations for a given thermal reactor (cf. Arts. 5 and 
lo), it is necessary to evaluate a number of constants which are characteristic of the 
materials of the reactor and their disposal in the reactor. In the reactor core, these 
constants are L* and D., which apply to the diffusion of thermal neutrons; k, the 
infinite multiplication constant, which is usually broken down as the product of four 
other constants 7, c, p, and f; and constants characterizing the behavior of fast neutrons 
in the reactor. It will be assumed here that one of the simpler descriptions of the 
slowing-down distribution will be employed and that the behavior of fast neutrons 
can be characterized by two constants, a slowing-down area 7 (or Lf2) and a diffusion 
constant Df. If a reflector is provided on the core, the same constants must be 
evaluated in the reflector also. Usually, k is zero in the reflector. 

If the structure of the reactor is so fine-grained that none of its parts exceeds a 
small fraction of a diffusion length in its smallest dimension, the reactor may be con- 
sidered to be effectively homogeneous and computation of the material constants is 
considerably simplified. If this condition is not met, the reactor is generally referred 
to as a lumped react0r.t The particular type of lumping, in which the fissionable 
material (fuel) is arranged in discrete lumps throughout the moderator-generally 
in a regular lattice pattern-is of frequent occurrence in reactor design. This type 
of arrangement reduces the absorption of resonance neutrons by U*3* and thereby 
allows criticality to be attained with lower IP/UZ3* ratios (lower enrichment) than 
would be possible with a homogeneous arrangement. 

In the following articles, evaluation of the material constants will be discussed 
both for the effectively homogeneous case and for the lumped case described above. 

9.1 The Infinite Multiplication Constant k 

The infinite multiplication constant is arrived at in the following way: It is first 
assumed that the region for which k is to be evaluated extends in all directions t,o 
infinity. In this infinite medium, k is defined as the number of secondary neutrons 
reaching thermal energy per primary thermal neutron absorbed in the medium and 
can be broken down into the product of four terms: 

k = wf (168) 

where 7 is called the regeneration factor, t the fast fission factor, p the resonance 
escape probability, and f the thermal utilization. Equation (168) is often referred 
to as the four-factor formula. Evaluation of these factors is discussed in the four 
immediately following articles. 

9.2 The Regeneration Factor 7 

The quantity 7 is defined as the number of fission neutrons produced per neutron 
absorbed in the fuel. The definition of fuel is to some extent arbitrary. In a reactor 
which is effectively homogeneous, the term fuel is usually applied to the fissionable 
isotope. In a lumped reactor the term usually refers to the fissionable isotope plus 
any isotopes which are mixed with the fissionable isotope or are geometrically closely 
associated with it. If the reactor is effectively homogeneous and the fuel is con- 
sidered to consist of the fissionable isotope only, 7 is a constant characteristic of the 
fissionable isotope. For thermal neutrons, 7 is given for a number of fissionable 
isotopes in Table 7. If the fuel is lumped, it may consist of a number of isotopes, 
some of which are fissionable and some not, If the various isotopes are intimately 

t The reactor might also he referred to, in terms of its neutron properties, aa a heterogeneous reactor. 
This terminology leads to some confusion, however. as the terms homogeneous and hcteroqeneous hsvo 
been used to characterize the state of actual physical homogeneity of the reactor. 
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mixed, they are all exposed to the same average neutron flux and v is given by 

c 
ViNicfi 

q= % 

c 

(169) 
NiGi 

i 

where Ni is the number of atoms of the ith isotope per unit volume, c,i is the micro- 
scopic fission cross section of the ith isotope, vi is the average number of neutrons 
emitted per fission of the ith isotope, and v.< is the microscopic absorption cross 
section of the ith isotope. 

In some cases it may be convenient to consider as part of the fuel nonfissionable 
isotopes which are closely associated with but not intimately mixed with the fissionable 

Table 7. Number of Fission Neutrons Emitted per Thermal Neutron Absorbed (7) 
by Thermally Fissionable Isotopes* 

Isotope ? 
um 2.08f 0.02 
U’J3 2.31 f 0.03 
I~“% 2.03 c 0.03 

*From “Neutron Cross Sections,” McGraw-Hill Book Company, Inc., 1955. 

isotope. An example is the material used for the cladding of fuel elements. In such 
a case the average flux may not be the same in all isotopes considered as part of the 
fuel. The quantity v is then given by 

c 
viNia,<4< 

q= ’ 

T 

(170) 
NiU.i& 

where 6 is the average flux over the ith isotope. For symmetrical cases, Qi may be 
computed by methods similar to those discussed in -4rt. 9.3. 

9.3 The Thermal Utilization f 

The thermal utilization is defined as the ratio of the number of neutrons absorbed 
per unit time in fuel to the total number of neutrons absorbed per unit time in the 
reactor. For an effectively homogeneous reactor it is given by 

f= 
Z,(fuel) 1 

Z,(fuel) + &,(a11 other materials) = 1 + [Z,(all other materials)/Z.(fuel)] 
(171) 

where 2, is the macroscopic absorption cross section. 
In a lumped reactor the absorption cross sections of the various materials must be 

weighted with the average thermal neutron flux over the materials. In computing f 
for such a case the reactor core material is usually considered to be infinite in extent. 
If the thermal neutron flux 4 in such an infinite system is written as a function of some 
space coordinate r, then f is given by 

(17% 

where the integration is taken over a typical volume of reactor material. The 
quantity 2.1 is the macroscopic absorption cross section of the fuel material only, 
and 2, is the total macroscopic cross section, including both fuel and any other 
materials present. 
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If the reactor core is made up of regularly spaced regions of fuel and moderator, 
each of which can be considered individually as homogeneous, and if the macroscopic 
absorption cross section is designated by 2 al in the fuel and by Z,,2 in the moderator, 
then f is given by 

x.1 
f= / fuel 4(sWV 

/ / 

(173) 
Ll fuel 4k)dV + za2 moderstor 4kW 

where the integrations are taken as indicated over a typical fuel region and a typical 
moderator region. It is convenient to work with the average fluxes in the fuel and 
moderator, $4 and 62, respectively: 

and 

%l = $ kUFl 4c7.w (174) 

(175) 

where Vr and V2 are the volumes of a typical fuel region and a typical moderator 
region, respectively. Then 

f= 
VI&& 1 

V1Z&3, + V2z32%2 = 1 + (2.~/2,,)(~2/~1)(~2/~1) 
(176) 

The ratio s$J~, is Ealled the disadvantage factor. &/J, is given explicitly in terms 

off by 

Disadvantage factor = $ = (177) 

For a fuel-moderator lattice of the type considered here, the first step in calculating 
f is the division of the lattice into a number of identical unit cells in such a way that 
the unit cell possesses the maximum possible symmetry. Thus, if the fuel is dis- 
posed in equally spaced slabs, the cell breakdown is usually made as in Fig. 11. 

FUE 

FUEL 

gi$EJ 

LTYPICAL CELL 
- _ 

iTYPICAL CELL 

FIG. 11. Section of reactor with fuel in FIG. 12. Section of reactor with fuel in long 
slabs. round rods. 

Figure 12 is a typical breakdown for a reactor using fuel rods in the form of long 
cylinders, disposed in a square array. The next step is to approximate the true 
shape of the cell by a shape which can be described by a single dimension. This 
must be done in such a way as to maintain the true volume of the cell: thus, the cell 
having the shape of a long square prism with side length as in Fig. 12 is approximated 

by a long circular cylinder of radius RZ = a/& (Fig. 13). 
With the problems reduced to one in a single dimension by a suitable cell approxima- 

tion, f may be computed by diffusion theory or by higher order approximations to 
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transport theory. Only diffusion theory is treated here, although it cannot. be con- 
sidered a good approximation for the cases of small dimensions and strong absorption 
which often occur in the cell treatment. 

The case of the cylindrical cell will be treated as typical (Fig. 13), and solutions 
will be given for other cases (Table 8). 

The cell problem is treated as a problem in the diffusion of thermal neutrons; the 
slowing-down density is assumed to be uniform over the region of the cell occupied 

by moderator (region 2) and to be zero 
in the fuel (region 1). There is thus a 
source of q neutrons/(cm*) (set) uniformly 
throughout the moderator, and the diffu- 

(G-2) 
(178) 

11 Dzv24z - 2,242 ;;pyderator (17g) _ 

MODERATOR 

where D is the diffusion constant and 2. 
the macroscopic absorption cross section. 
Writing x = 2,/D, the solutions of Eqs. 
(177) and (178) are, respectively, 

41 = AZo(x,r) (180) 

(181) 

FIQ. 13. Square cell of Fig. 12 cylindri- where the KO solution in region 1 has been 
ciaed. precluded by the requirement that 4 be 

finite at r = 0. 
Since all the cells are identical and are assumed to constitute an infinite array, there 

must be no neutron current from cell to cell; hence d42(R2)/dr = 0. Application 
of this boundary condition to Eq. (181) gives the relation between the constants B 
and G: 

032) 

and Eq. (181) can be rewritten as 

42 = G[k'~WL)Zo(x~~) + Z~(mRz)Ko(x~r)] + c2 (183) 

where G is a new constant 
B 

G = Zi,(mR,) 
(18-1) 

Table 8. Values of E and F for Cylindrical, Slab, and Spherical Geometry* 

Cell 
geometry 

P E m 

xlR, Io(xlR~) 
Cylinder - - 

2 I,(mRd 

Slab XIR, coth x,R, 

Xl’R,Z 
Sphere - 

tanh x,R, 

3 xtR, - tanh x,R, 

For sphere and cylinder, RI ia the radius of fuel, Rz the cell radius. 
of fuel, Rt the half thickness of the cell. 

For slab, RI is the half thickness 

* A. %I. Weinberg, 
Subscripts I refer to fuel and 2 to moderator in all cases. 

“Science and Engineering of Nuclear Pbwer,” 
Publishing Company, Reading, Mass., 1949. 

vol. II. chap. 6. Addison-Wesley 
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Applying the conditions &r(Ri) = +z(R ) I and D,c#B~‘(R,) = D&I~‘(R,) at theinterface 
between regions I and 2 to Eqs. (180) and (183) yields the values of the constants A 
and G: 

D,xl Z,(x,R,)[K,(,,R,)Z,(xzR1) + Z,Wh)~o(~zRdl 
~1(,m~2)11(~zRd - Z~(X~RXI(~L) 

(185) 

and 
1 1 Dm K~(xzR~)Z~(xzRd - ZI(~L)ZG(~ZR~ -=-- (186) 

G A DINI Z,b&) 

although, for the evaluation off, the value of G is not required. 
To evaluate f the basic definition of f is recalled: 

absorption rate in fuel 
total absorption rate 

These equations will be evaluated for unit length of cell. The absorption rate in 
fuel per unit length is just the net neutron current into region 1 per urut length, or 

Absorption by fuel per unit length = 2rrR,J(Rl) = 2aR1 [ DI 2 (Cd] 

= 2,rRlA 2 Z,(x,R,) 
Xl 

The total absorption per unit length of cell is just the total source strength per unit 
length : 

’ Total absorption per unit length = T(R? - R12)q 
whence 

1 ,qx,(Rzz - RI*) 1 -=p--= qx,(R? - Rlz) 1 

f ~KR&IZI(XIRI) A ~&RIZI(QRI) 2 
(187) 

and, inserting the value for l/A, 

1 + x2 (Z&2 - Z&2) Z&~R,)K,(H~R~) + KdxtRdZhzRi 

2% Z,(x~R,)K,(mR~) - ZL(mRdZ1(mRd 1 
(188) 

Thus l/f consists of two terms, one of which involves x of the fuel only and the other x 
of the moderator only. This form of expression for l/f can be derived for other one- 
dimensional geometries, the customary form of the equation being 

Here F a function of x1 and RI only, is actually the ratio of the flux density at the 
fuel-moderator interface to the average flux density in the fuel. The quantity 
(VG302/V1&) F is often called the relative absorption. The quantity E - 1 is 
called the excess absorption. It accounts for the effect ‘of the higher average flux 
density in the moderator relative to that at the interface.’ The values of F and E 
for the case of cylindrical symmetry are obvious by comparison of Eqs. (188) and 
(189). They are repeated in Table 8, alon, u with the values for the cases of spherical 
geometry and slab geometry. 

If the fuel is surrounded by a thint layer of nonfissionable material of volume V, 
per unit length of cell and macroscopic absorption cross section &a, its effect can be 
included by modifying the equation for l/f to 

V”TEo2 + V3L3 
I+ ( - V&l ) F + (E - 1) (190) 

where the values of F and E remain unchanged. 

t “Thin” implying that the effect of the layer on the flux distribution-whether the effect be due to 
absorption, diffusion constant, or slowing-down properties-is negligible. 
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9.4 The Resonance Escape Probability pt 

In the expression for k of a thermal reactor the resonance escape probability of 
interest is that over the neutron energy range from the upper energy limit of important 
resonance absorption to thermal energy. If the upper energy limit is designated Eo, 
then the resonance escape probability to thermal energy p(th) for an effectively 
homogeneous reactor containing a resonance absorber is 

& (E’) dE’ 

z(E’)[Z,(E’) + z,(E’)l E’ 
(191) 

where &(E’) is the macroscopic absorption cross section, Z&V’) the macroscopic 
scattering cross section, and t(E’) the average logarithmic energy decrement per 
collision (Art. 3.1) in the medium. These quantities are seldom known in sufficient 
detail to permit evaluation of Eq. (191); an experimentally determined effective 

I 

EQ 
resonance integral 

dE’ 
QOSll - 

Elh E’ 
is usually used for evaluation of p. If z and 2. can 

be considered constant with energy (usually true in the resonance range), p(lh) is given 
bv 

p(th) = exp (- i% /~~~-j,~) (192) 

where N. is the number of absorber atoms per unit volume. Although the effective 
resonance integral is an experimentally determined quantity, it is, in principle, 
given by 

dE’ EQ 

I 

1 dE’ 
~OSfJ - = 

E’ Eu 1 + (N,u,/z,) no E’ (193) 

and is a function only of the species of absorber and the ratio N./Z.. Figure 14 gives 
experimentally determined curves of the effective resonance integrals as functions of 
N,/zz. for uranium and thorium, the two most important resonance absorbers which 
occur in reactor problems. The procedure for computing p(th) for these cases is as 
follows: (1) Compute NJ&, where 2, is the total macroscopic scattering cross section 
in the medium,:including the contributions of all scatterers present. (2) Find the 

I 

EO 
8.. 

corresponding value of Eti B,.,, $ from the curve Fig. 14. (3) Use this value in 

Eq. (192) to compute p(th), employing a value of .$ consistent with the scatt.ering 
cross sections previously used [Eq. (37)]. 

If lumped resonance absorbers are present, the resonance absorption density inside 
a lump is much lower than that at the surface because of the very strong absorption 
by the resonances. If the material of the lump has very low moderating power, 
the energy regions depleted of flux by the strong resonance absorption near the surface 
are not replenished by moderation, and this “self-protection” of the absorber against 
resonance neutron absorption is particularly great. It is this effect which makes 
possible the construction of a critical reactor from lumps of natural uranium in a 
moderator, despite the high resonance cross sections of Uz3* which, in a uniform mix’- 
ture of uranium and moderator, would ahsorb too many neutrons to permit criticality. 

Unless the lumped resonance absorber has a simple and well-known resonance 
structure, its absorption must be determined by a semiempirical method. The case 
of uranium is typical of the latter approach. 

It is predicted theoretically and is found experimentally to be true that the rate of 
resonance absorption by lumps of uranium of simple shape (no.reentrant surfaces) 
can’be represented by an expression of the form 

A(E) = &(E)N,Vlu(E) + 4.(E)NlVJ@) $ (194) 

t Cf. A& 3.5, 



-- 
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where A(E) is the number of resonance absorptions per second per unit energy 
interval, T,(E) is the average flux per unit energy interval in the interior of the 
lump, q,(E) is the average flux per unit energy interval over the surface of the lump, 
Ni is the density of absorbing atoms in the lump, and VI, S, and M are the volume, 
surface area, and mass of the lump, respectively; a(E) and b(E) are to be determmed 
experimentally. 

If the lumped resonance absorbers are arranged in a regular lattice, some volume 
of moderator V2 will be associated with each fuel lump, the absorber plus moderator 
making up a cell similar to those previously discussed (Figs. 11 to 13). It is assumed 

400 I ! 11111!1 I I I IllIll I 1111111 
I I I I I 
I 1 I I I , ,,,DAh I,,, &A, 

o URANIUM OXIDE. UOz 
. THORIUM OXIDE. ThO 

SCATTERING CROSS SECTION PER ABSORBING ATOM (IO-%‘+?) 

FIG. 14. Effective resonance-capture integrals of Uz3* and Th2J* diluted with neutron- 
scattering materials. (Reproduced from R. L. Mad&n and H. S. Pomemnce, Resonance 
Capture Integrals, Geneva Conf. Paper A/Conf.8/P.833/Rev.l.) 

that there is no resonance absorption in the moderator. The decrease with decreasing 
energy of the number of neutrons slowing down in the cell past any energy E is then 
due to the absorption in the lump;‘i.e., 

and Q(E) is given, very nearly [Eq. (41)1, by 

Q(E) = V&(E)&hE 

whence, combining Eqs. (194), (195), and (196), 

-- =- &(E)N,Vs(E) + &(E)NIVJO) S/M 

Vv&(E)~~& V&(E) Ez& I 
(197) 

and integrating between the limits Eth and EC,, p(th) is given as 

p(th) = ‘$ = exp ( - $$- [ IEyI z a(E’) g 
0 2 2 12 

+ ; j-E::% b(E'jd;]} (198) 
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If it is assumed that &(E)/&(E) = &(E)/&(E) and that the ratio &(E)/&(E) is 
independent of energy in the energy range of important resonance absorption, then 

p(h) = exp - _ F 1”” a(E’) g + ; b(E’) g] NIVI $1 
V&&Z 42 EC, 

= exp (199) 

The above argument makes it appear reasonable that the effective resonance integral 
for a lumped resonance ahsorber in a lattice arrangement can be represented, for 
various geometries of absorber, by an expression of the form 

/ resonance 
ua&E’) ‘+ = A + P; Gw 

Where the subscript “resonance ” on the integral sign denotes that the integration is 
taken over that energy range which includes all important resonances, from thermal 
to f&ion energy. 

Values of A and p which have been used for natural uranium and natural uranium 
compounds are given in Table 9. 

Table 9. Resonance Constants for Natural Uranium Metal and Some of Its 
Compounds, for Use with Eq. (200) * 

Material A, barns p, barn g/cm* 

U 24.7 
UlOll 20 
UOZ 22. I 
UF6 16.3 

I I 

* From “The Reactor Handbook,” vol. 1, Table 1.5.26. AECD 3645. March, 1955. See original 
table for 80urce~ of information. 

In order to compute the resonance escape probability, it is necessary to evaluate 
the ratio &/& [Eq. (199)]. The computation of this ratio is formally identical with 
the computation of the disadvantage factor (.4rt. 9.3). If a resonance disadvantage 
factor jr is defined in a manner completely analogous to the disadvantage factor of 
Art. 9.3, then [cf. Eq. (177)] 

$ 1 Z,?V2 1 =- 
@2 resonance disadvantage factor &VI l/f, - 1 

1 

= 8’ + (z:o,V,/z,~V~)(E - 1) 

[see Eq. (lS9)], and 

p(th) = exp 
1 c-332) 

V&&F * 

/ 

+ 
z,,@,n@ - 1) 

N,Vl 
resonance 

uo,,,(E’) (dE’/E’) zJ’JI 
/ resonsnce 

u,~,,(E’) W’lE’) 1 
In this expression the symbol zaz denotes a fictitious “absorption” cross section 
(macroscopic) which is really a slowing-down cross section, characterizing the prob- 
ability that a neutron will be slowed out of the energy range occupied by the reso- 
nances. It is equal to 2,, the number of scattering collisions per unit volume per 
second per unit flux divided by l/g In El/E,, the average number of collisions required 

-~- 
g 

:- 
,1 

‘.P 

2; 
,-g 

~..‘.. 
.+f 

~ 

Z$ 
-.+ 

~-- 
-g 

-=1” 

./ 
-; 

5. 
--* 
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to slow a neutron through the resonance region covering the energy range E, to IL: 

‘p 
-J” = (I/&) l:EJEz) 

The average absorption cross section in the absorber Zai is, by definition, 

Nl I n.O,,,(E’) (dE’/E’) N, 
/ RS”ll8WX 

ac@‘) W’IE’) 

Zeal = 
resonance = 

/ 

In (EJE,) 
(204) 

dE’/E’ 
rO*on&nCe 

From Eqs. (203) and (204), 

&l Nl -==--- 
zaz I&? I resonance UfL~,,(E’) dg (205) 

and Eq. (202) becomes 

1 

1 we) 
+ (E - 1) 

In order to apply Eq. (206), it is necessary to know the effective values of x for 
the absorber and the moderator (for evaluation of E and F) and an effective value of 
$2, for the moderator. Experimentally determined values of x1 are given for uranium 
and uranium oxide in Table 10, and values of x2 and && are given for various modcra- 
tors in Table 11. 

The procedure for calculating the resonance escape probability is, then, the follow- 
ing. (1) Set up a cell system appropriate to the lattice geometry (cf. Figs. 11 to 13). 
Designate the fuel as region 1 and the moderator as region 2. (2) Take values of XI 
and X? from Tables 10 and 11 and use them with the cell dimensions to calculate F 

Table 10. Values of x1 at Resonance Energy in Natural Uranium Metal and II308 

kO* 
x1 = 0.0222p cm- 
x, = 0.025~ an- 

L) = density. g/cmJ. 

Table 11. Moderator Resonance Constants* 

/ 
Material F., barns per atom or per molecule X2/P, cm2154 

--- 1 

HI0 38.5 0.583 
DsO 5.28 0.141 
Be 1.26 0.128 
Be0 I. 76 0.0690 
Graphite 0.76 0.0672 

I I 

* From “The Reactor Handbook. ” vol. 1. Table 1.5.27. (See. Ref. 17.) Original mume CL-697, 

IV E. 
Vsluea of x*/p are for me with U; if fuel is oxide, multiply by 0.88. 
p = density, g/cma. 

and (E - 1) by the appropriate equations of Table 8. (3) Compute the surface/mass 
ratio (S/M) of the fuel lump, and use it, with values of A and p from Table 9, to 

compute the effective resonance integral 
/ resonance 

aae,,(E’)(dE’/E’) by Eq. (200). 

(4) Take the effective value of &Zsx for the moderator from Table 11, and combine 
with the other quantities determined above to find p(th) by Eq. (206). 
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9.6 The Fast Fission Effect c 

The fast fission effect applies to the fission of Uz3* nuclei by fast neutrons in reactors 
containing relatively large proportions of Uz3* to U*35. It is usually a negligible 
effect in effectively homogeneous thermal reactors because of the usually low ratio 
of Us3* to moderator in such reactors. Only neutrons having energies above about 
1 Mev can cause fission of Uz3*. For this reason the following two assumptions can 
often be made in calculating s for lumped reactors: 

1. Any inelastic scattering collision within the fuel reduces the neutron energy 
below the Uz38 fission threshold. 

2. Any neutron which escapes the fuel lump is degraded to an energy below the 
Uza* fission threshold by the moderator before it reaches a new fuel lump or is scattered 
back into the original lump. 

The quantity e: is defined as the number of neutrons slowing down past the fission 
threshold of Uz3* per neutron produced by thermal fission. With the above assump- 
tions it is given by 

E _ 1 = Iv - 1 - @l~~)l(%lzt)P 
1 - (vZt + Z.I)P’l& 

where Z,, Zf, Lz, and & are, respectively, appropriate average values of the capture, 
fission, elastic scattering, and total cross sections in the fuel lump and Y is the average 
number of fast neutrons produced per fission of V8 by fast neutrons. 

0.6 

0 
0 0.2 0.4 0.6 0.6 1.0 1.2 1.4 1.6 I.6 2.0 2.2 

FIO. 15. Probability of first-flight collision within a fuel lump. Z is the macroscopic total. 
cross section, x the reciprocal of thermal diffusion length. For spheres and cylinders R is 
the radius; for slabs it is the half-thickness. I” is given by the curves for x/Z: = 0. (Repro- 
duced from Fig. 15.14, The Reactor Handbook, vol. 1, AECD 3645, March, 1955; ori&ud from 
CD-644.) 

In Eq. (207) P is the probability that a neutron produced by thermal fission in the 
fuel lump will make some kind of a collision within the lump before escaping. The 
neutrons produced within the lump by fast fission may, in turn, produce further fast 
fissions within the same lump, and on occasion a sequence of such fast fissions may 
last through several fast-neutron generations. The denominator of Eq. (207) takes 
account of these fission sequences. The factor P’ is the probability that a neutron 
produced by fast fission in the fuel lump will make some kind of collision within the 
lump before escaping. In computing P it is assumed that the sources of fission neu- 
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trons under consideration are distributed in the fuel lump according to the thermal 
flux distribution in the lump, whereas in computing P’ it is assumed that the sources 
are distributed uniformly within the lump. Computed curves of values of P for 
various lump sizes and geometries are given in Fig. 15. Note that P, since it involves 
the distribution of thermal fissions, is a function of both x, the reciprocal of the thermal 
diffusion length in the lump, and &R, the dimension of lump measured in total mean 
free paths. The quantity P’ for a given geometry is a function of &R only; it is given 
in Fig. 15 by the curves for which x/G = 0. 

Values of the other constants needed for Eq. (207), for natural uranium metal, 
are given in Table 12. 

Table 12. Fast Effect in Uranium 

Constants for computation when there is no fast-neutron interaction between fuel lumpa:* 

Constant 
a/ 0.29 barns 
Cal 1.5 “ 
0.a <0.04 “ 
a 4.3 (' 
Y <2.55 (dimensionless) 

Experimental values of fast effect (2) for 0.600-in.-diameter rods of slightly enriched uranium in light 
water. There is fast-neutron interaction between fuel 1umps.t 

Volume water 

Volume uranium 

0.1785 1.299 1.227i 0.011 
I 1.299 I.105 i 0.002 
1.5 1.299 1.072i 0.001 

: 
1.299 I.061 f 0.001 
1.299 1.047f 0.001 

4 1.299 1.043* 0.001 
I I.143 l.lO9k 0.002 
1.5 I.143 1.074* 0.001 
4 I.143 1.042f 0.001 

‘. 

% KJZJS in uranium 
(by weight) 

L 

* From “The Reactor Handbook, ” vol. I. Table 1.5.20. AECD-3645. March, 1955. Original source 
CL-697. 

t H. Kouts, G. Price, K. Downes, R. Sher, and V. Walsh, Exponential Experiments with Slightly 
Enriched Uranium Rods in Ordinary Water, Geneva Conf. Paper A/Co”f. 8/P/600. June 30. 1955. 

In close-packed lattices such as those which occur in some water-moderated reactors, 
assumption 2 above does not hold, and there is a substantial increase of t over that 
calculated by the foregoing method as a result of the mutual fast-neutron interactions 
between separate fuel lumps. Measured values of E for some HSO-uranium lattices 
of this type are given in Table 12. 

9.6 The Thermal Diffusion Coefficient Do 

For an effectively homogeneous medium the thermal diffusion coefficient can be 
computed from Eq. (10) or, if the medium absorbs strongly, by Eq. (9). Measured 
values of &, should be used if they are available. If they are not, the scattering cross 
sections must be used in conjunction with a value of po computed from Eq. (11). 
Table 13 gives transport mean free paths for some materials of importance. If the 
medium is a mixture of materials, a macroscopic transport cross section (Zt? = l/Xl,) 
can be obtained for each component and the total macroscopic transport cross section 
of the medium can be taken as their sum. 

In the case of lumped reactors, the ratio of moderator volume to fuel volume is 
often sufficiently large that the moderator diffusion coefficient can be used as the 
diffusion coefficient of the medium. If this condition does not hold, an approximate 
value for an effective transport cross section ‘can be computed by taking a flux- 
weighted average of the transport cross section over a lattice cell! exactly as is done for 
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the absorption cross section in Eq. (209). The quantity D. can then be computed 
as for the homogeneous case above. The resulting expression for the effective diffusion 
coefficient is 

1 1 1 + (V,IV?)(&I~~) 
iAh + 3E1, = ii L&2 + (V,lV2)(~1/&~&1 

where 
Vlh f za2 -= -- 
V& 1 - f 2.1 

The approximation is a poor one for use in matching neutron currents at a reactor 
boundary, since the cell approximation does not hold at the boundaries. Such defects 
are inherent in the cell method and are the price paid for the simplicity of the method. 

Table 13. Thermal Diffusion Length and Transport Mean Free Path of 
Various-Materials* 

H90 
DIO (0.16 % Hz01 
Be (p = 1.85) 
Be0 (p = 2.69) 

GyBhte (corrected to p = 1.60): 

AGOT 

Th (p = 11.2) 
ThO, (p = 6) 
U (p = 18.9) 
U10a (P = 6.0) 

Thermal diffusion Transport mean free 
length I*, em psth (thermal). cm 

2 85-t 0 03 0.48-k 0.01 
116 +4 2.65 I 0.15 

20.8 310.5 I, 43 * 0.05 (using a.~ = 9 millihnms) 
29 k2 0.90 (cslculsted from original 

reference-CP-3647, 1946) 

54.4 f 0.5 
(gabs = 4. 4 millibarns) t 

52 *I 
(caba = 4.8 millibarns)t 

2.7 f0.3 
4. I f 0.4 
1.55+ 0.05 
3.7 *0.4 

* From “The Reactor Handbook,” Table 1.5.4. AECD-3645. March, 1955. See original table for 
wurces of information. 

t 2.200-m/see values; obtained by using a calaulated value of 4.70 barns for the Maxwellitrn overage 
of the total cross section. 

9.7 The Thermal Diffusion Area L*( = I/X*) 

The thermal diffusion area is given, in all CRSCS, by the equation 

(208) 

where &h is the total thermal macroscopic cross section of the medium. In the 
case of a lumped reactor an effective absorption cross section 2, must be used in the 
reactor core. The effective value is taken as the volume average of the true absorption 
cross section, weighted by the therms.1 flux density; i.e., for a ccl1 (see Figs. 11 to 13) 
where the fuel is designated by the subscript 1 and the moderator by the subscript 2 ._ 

z; = v*rza* + v1%3,(&/&) 
v2 + vl(&l&j- 

. 

x32 V2 =- 
1 - f v2 + V,(&lJ?) 

(209) 

where &/&is the reciprocal of the disadvantage factor [Eq. (177)l and f is the thermal 
utilization [Eq. (189)]. Usually the term VI(&/+) -2 in Eq. (209) can be neglected in 
comparison with Vz. For this case 

E, L x.2 
* 1 -f (210) 
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and if the diffusion coefficient of the medium is taken to be that of the mode,rator, 
the diffusion area becomes, approximately, 

L* a L&l -f) (211) 

where Lz2 is the diffusion area of the moderator. 
Experimental values of thermal diflusion length for a number of materials arc given 

in Table 13. 

9.8 The Fast-diffusion Coefficient Df 

An effective fast-diffusion coefficient covering a range of energies can be defined only 
within the formalism of the group treatment of slowing down. 

Most reactors can be considered effectively homogeneous with respect to fast 
neutrons, for even in lumped reactors the slowing-down lengths and absorption mean 
free paths are sufficiently long that large variations in fast flux do not occur over a 
typical lattice cell. Hence, at a given energy, a total transport cross section Z,,(E) 
can be evaluated which is just the sum of the macroscopic transport cross sections of 
all the reactor core materials, considered to be uniformly mixed together. Thus a 
diffusion coefficient D(E) = 1/3&,(E) can be evaluated as a function of energy over 
the energy range Ei to ES covered by the fast-neutron group in question, Usually 
D(E) will not vary rapidly, with neutron energy, and it is therefore permissible to 
make the assumption that the variation in energy spectrum from point to point in 
the medium can be neglected. An effective diffusion coefficient D, can then be 
evalunt,ed for the group simply by averaging D,(E) over the energy distribution of 
flux b(E): . , 

/ 
Ez D(E)4(E) dE 

D, = E’ Et 

I 
E, 4(E) dE 

If the energy distribution of flux can be represented by the l/E distribution (Art. 
3.2) the expression becomes 

I_“’ D(E) (d-J-f/E) 
D/ = JE’ ln E ,E 

2 1 

9.9 The Slowing-down Area (T or Lt2) 

The computation of slowing-down area is quite difficult except in those cases for 
which the Fermi age approximation applies (the approximation applies fairly well for 
beryllium and moderators of higher mass number provided inelastic scattering is not 
important). When the approximation does apply, T can be calculated by the equa- 
tions of Art. 3.4. For other cases, see Ref. 5. 

In all cases a measured value of T should be used if one is availa.ble. Measured 
values are given for a number of moderators in Table 14. The table contains measured 
values for fission neutrons slowed down to the indium resonance energy and cal- 
culated values from the indium resonance energy to thermal. The total 7 from fission 
to thermal energy is the sum of the two. 

As pointed out above (Art. 9.8), even lumped reactors can usually be considered 
effectively homogeneous in computing fast neutron constants. In many lumped 
reactors the slowing-down area for the uranium-moderator lattice is very nearly the 
same as that for the moderator alone; the high inelastic scattering cross section of the 
uranium compensates for its low elastic slowing-down power. 

In two-group calculations the slowing-down area is designnt,ed by L,* instead of 7 
and is treated as a constant which may be adjusted to compcrisate for the deliciencies 
of the exponential descript.ion of slowing down distribution. These adjustments are 
discussed in Art. 5.6. 
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Table 14. Age of Fission Neutrons in Various Moderators* 

Moderator 

Hz0 
DzO (0.16% HzO) 
Be (p = 1.85) 
Be0 (p = 3.0) 
C (p = 1.60) 
66.7 % HzO, 33.3 % 41 
50% HzO. 50% Al 
80% H20, 20% Zr 

by vol 

50% HtO, 50% Zr I 

D*O (p = 1.1 g/cm’) 
DzO + 1.4 g ThOe/g DzO 
Da0 + 2.8 g ThOa/g DzO 

(ThO, density = 9.69 g/cm9 
96.7 % D20, 3.3% U, by vol 

(Room temperature) 

Age to indium 
resonance. cm’ 

30.4* 0.4 
100 *5 

80 k2 

311 *3 
49.6 
76.8 
35.7 

- 

i 

- 

Calculated age Age to 
ndium resonance thermal, 
to thermal, cm2 cm’ 

I 

17.2 

53 

: 

31.4 
125 

97.2 
105* IO 
364 

51.6 
79.8 

611 
(from reactor analysis) 

107 f 50 

Values of r for HzO-U mixtures can be inferred from Mz measurements in the following reports: 
S. Krasik and A. Radkowski, Pressurized Water Reactor (PWR) Critical Experiments, Geneva Confer- 
ence Paper A/Conf. B/P/601. June 30. 1955; H. Kouts et al.. Exponential Experiments with Slightly 
Enriched Uranium Rods in Ordinary Water, Geneva Conf. Paper A/Conf. 8/P/600. June 30. 1955. 

*The first eight values are from “The Reactor Handbook,” Tables 1.5.1 and 1.5.2. AECD-3645. 
March, 1955. See original table for sources of information. 
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10 MULTIGROUP CALCULATIONS 

By David Okrent 

In Art. 5.8 the multigroup formulation was given for the case in which fission occurs 
only in the thermal group and all fission neutrons pass through all the epithermal 
energy groups before becoming thermalized. A more general formulation is neces- 
sary for the treatment of fast reactors or reactors in which an important fraction of 
the fissions occur at epithermal energies. Applications and methods of solution of 
multigroup calculations are varied and are often too complicated to be handled by 
manual computation. In the following article the method is applied to the case of a 
bare reactor, which requires only a modest amount of computation but suffices to 
illustrate the application of the method. 

10.1 The Multigroup Equations 

If those neutrons whose energy lies between two arbitrary limits Ej and Ej-1 (Ej-1 > 
Ej) are considered to make up the flux in group j, the time-independent diffusion 
equation for this group can be written in the form 

Dj VVj(r) - (&.j + 2j.j + Gn,j + z I c mod.j)+j(r) + Sj(r) = 0 (214) 

where Dj V'bj(r) = usual leakage term 
2c.j = macroscopic capture cross section for group j 
Zf,j = macroscopic fission cross section for group j 

&a, j = macroscopic cross section for scattering inelastically out of group j 
~~r,,,~d.j = macroscopic cross section for elastic moderation out of group j 
Z‘remova.j = Z,,j + z,., + 2in.j + &rrnod.j = the total macroscopic cross sec- 

tion for processes removing neutrons from group j 

. 
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and where Xi(r) includes all neutrons born into group j at position r. These neutrons 
could be the result of fission by neutrons of any and all energies or the result of an 
energy-degradation process from some higher energy into the band between Ej and 
Eivl. (Herein the possibility of an external source will be omitted.) 

The entire energy range of interest will be divided into N groups or energy bands. 
Furthermore, yf will be defined as the fraction of all fission neutrons born into group j, 
and ok as the total number of fission neutrons born per fission in any group k. Then 
Eq. (214) may be rewritten in the form 

Dj V*+j(r) - &mwcIj h(r) vk%&#dT) 

k=l 

Zczmo~(m-+ M,(r) = 0 (215) 

I=1 W&=1 

Of course, &(Z + j) is the macroscopic cross section for scattering from group 1 
into group j. Thus 

121 . 

z 
’ Zi,(E -+ j) = ~i~.l W-4 

j=l 

and a similar expression holds for the elastic moderation cross sections. The elastic 
moderation source, in principle, could have contributions from all higher energy 
groups; hence it has been summed from the highest energy group 1 to that just above 
group j. However, for materials other than hydrogen, such contributions are possible 
only from relatively nearby energy bands and frequently only from the next higher 
(in energy) group. 

Equation (215) then describes the diffusion of neutrons in group j within a particular 
homogeneous region. A set of cross sections for all N groups is required for this 
region. The result is N simultaneous equations which describe the problem over the 
entire range. Of course, iP more than one region needs to be considered, a cross- 
sectional set is required for each region. The usual boundary conditions of con- 
tinuity of flux and current are applied to each group, and the multiple sets of simul- 
taneous equations solved. 

This latter problem of multigroup theory in more than one region cannot generally 
be solved analytically. A numerical solution of an iterative type is required. This 
solution is of such magnitude and needs such great accuracy that only modern high- 
speed computing machinery is really practical for its achievement. 

10.2 Simplifications for Single-region Computation 

If multigroup diffusion theory is being applied to a single region (specifically, a 
bare reactor core) a simplifying assumption can be made which makes possible a semi- 
analytic solution with only a few hours work at a desk computer. 

The basic hypothesis is that the flux has the same shape in every group. Within 
the framework of diffusion theory, this would be rigorously true, independent of 
geometry, if and only if the extrapolation distance were the same for all groups. This 
is not usually the case. Furthermore, there is direct experimental evidence that the 
neutron energy spectrum is not space independent in a bare core. Nevert,heless, the 
assumption of a space-independent neutron energy spectrum in a bare core is not a 
very bad one and gives results which are rather good away from the boundaries. 

Thus, it is assumed that 
@i(T) = +ipCr) 
@k(T) = &F(r) 
@i(7) = #II;“69 

In other words, F(r) is a spatial shape factor independent of energy. It is further 
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assumed that 

VW(r) = -BV(r) (217) 

where B2 is the so-called material buckling. If a bare core of this material were built 
in any shape, its extrapolated dimensions would have to bc such that the geometric 
buckling equaled this material buckling at criticality. 

With these assumptions Eq. (215) becomes 

. 

: 

N 

-DjB*+j - Lmomj4j + pi 
c 

vkZJ.k+k 

k=l 
j-1 j-l 

+ 
c 

&,(I+ 34, + 
2 

2.1 ~(m -+ A4, = 0 WA) 
Z=l n-l 

/ 
The spatial dependence has been completely removed, since it is now common to 

every term. It is convenient to rewrite Eq. (218) in another form, namely, 

N j-1 

Yi 
c 

j-1 

VkzJ,k+k + 
c 

&(1--t j)4t + Ll md(m --t j)4, 

4i = k-1 
c 

l-1 I=1 

DjBa + Scmovelj 
(219) 

10.3 Procedure for Solution 

Equation (219) really comprises a set of N simultaneous equations, one for each 
group. In practice, this is usually solved by an iterative procedure. For the highest 
energy group (j = 1) the numerator consists only of the fission source, no contribu- 
tions being possible from inelastic or elastic moderation processes. If it is now 

N a. 
assumed that the total fission source for all groups 

c 
Vk&.k+k is some arbitrary 

k=l 

number, say unity, +I is given by 

- 

41 = 
Yl 

D1B2 + h,mtor~ 
Gmo 

The quantity 61 still remains a function of B2. The procedure for solution is to 
guess some reasonable value for BP, keeping in mind that it is this quantity which will 
be iterated on. When the solution converges, the critical value of the material 
buckling will have been determined. The quantity +1 is computed from Eq. (220) 
with the trial value of B2; it is then possible to evaluate +*: 

42 = 72 + Zn(’ -+?)41 + Zsl med(++2)41 

D2B2 + 21,emove.a 

Since this group gets source neutrons other than fission only from group 1, it is com- 
pletely specified and 42 can be calculated. 
groups in numerical order in this fashion. 

The process is continued through all the 

At this point a set of +‘s has been obtained, and the convergenc,evt,est is to be applied. 

This is done by calculating a value for the total fission source 
c 

Yk~J.k+k and Com- 

k-l 
paring it with the original assignment of unit.y. If the two agree within the desired 
accuracy, the equations hare been solved. Otherwise, a new guess on B* is made and a 
second iteration performed. The iission source is again computed, using the new set 

1. 

.~ 

.- 

-: 
;,. 

; 

. . 
-i. 

.z 

:<. 

-; 

.-; 

-. 

.I, 

.Li 

.~ : 

-_ 

~.. -I 

-. 

pi 

. . 
: 

_- 

< 
.a 



SEC. 6-21 REACTOR CALCULATIONS 6-91 

of +i’s, and compared with unity. This process is repeated until convergence, which 
comes quickly with some practice. 

When the solution is complete, not only the material buckling B* but also the 
neutron energy spectrum have been determined. The spectrum is, of course, given 
by the relative values of the total flux +j in each energy band. 

10.4 Applications 

The single-region calculation has a variety of applications, particularly for inter- 
mediate and fast reactors. It can be used in parameter studies to give the neutron 
energy spectra and critical masses for cores of varying composition (assuming a 
previous knowledge of reflector savings). In connection with the latter, some caution 
must be exercised in applying the results to reflected assemblies, since the reflec- 
tor savings may differ sufficiently to alter the apparent trends of the one-region 
calculations. 

The neutron energy spectrum can be used in predicting various performance criteria, 
also in establishing a set of one or two group cross sections for performing multiregion 
calculations. Caution must again be exercised in that this spectrum is quite accurate 
in performing energy averages for the core but will probably not be representative 
of the reflector spectrum. This latter will probably change quite rapidly with dis- 
tance from the core. 

10.6 Example 

Suppose it is desired to determine the critical mass and various other performance 
data of a certain fast power reactor. It is sodium-cooled, uses a plate-type fuel ele- 
ment having a partly enriched uranium meat and a stainless-steel jacket. It is 
assumed that previous experience indicates a reasonable reflector saving for this core 
and the type of blanket contemplated. Then the material buckling is required for 
the assignment of critical mass. 

First, a group energy structure must be chosen so that cross sections can be assigned. 
The choice is arbitrary, and the structure is a function of personal taste and previous 
experience. However, the technical facts do suggest that certain boundaries are 
reasonable. For example, the fission of II238 will be an important contributor to 
reactivity; also, it is an important performance criterion. Furthermore, Uz3* has a 
fission threshold in the neighborhood of 1 Mev; that is, it does not fission below this 
energy. Above, it rises rapidly to a rough plateau. Hence, a logical place for a group 
boundary is this threshold. 

Again, suppose the fission or capture cross section of the fuel IW exhibited a 
marked change below some energy. It might be quite flat above 100 kev but rise 
sharply below this energy. This, too, would then be a logical place for a group 
boundary. Indeed, if it was expected that a significant amount of the total flux 
present was to be found below 100 kev, several groups might be used below 100 kev 
in order to describe these events accurately. Thus, some idea of the neutron energy 
spectrum to be expected is helpful in assigning group structure. 

Again, if one of the materials had a large resonance in a region of considerable flus, 
a group might be assigned to bracket it. 

Finally, the manner in which certain important cross-sectional measurements were 
made might be suggestive of group structure. For example, to find where in the 
energy scale inelastically scattered neutrons go, threshold detectors like Ue3* and 
Npz3r are used. The neptunium threshold is around 400 kev. If a significant amount 
of the inelastic scattering data is based on this detector, this energy becomes a natural 
position for a group boundary. 

The above is only illustrative, not all-inclusive. Depending on the particular 
subject of interest, one or another group structure may bc chosen. 

In the present example, there is no special side interest which requires a bunching 
of groups, etc. A total of six groups is selected as a reasonable number to work with. 
Since most of the neutrons are expected in the neighborhood of 100 to 300 kev, a 
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greater density of groups is used in that region. Thus, the following group energy 
structure is chosen, and the yj’s are assigned accordingly. 

Group No. 

: 
4 
5 
6 

Energy interval, Mev 

m-l.4 
1.4-0.7 
0.7-0.4 
0.60.2 
0.2-0.05 
0.05-0.0 

7 

0.47 
0.31 
0. II 
0.07 
0.04 
0 

The yj’s are obtained by integrating the normalized fusion spectrum with respect 
n 

to energy between the limits of the various bands. Of course, 
c 

yj = 1. 

j=l 

One now needs to assign group cross sections. The technique used depends on the 
accuracy desired and the information available on spectrum and cross sections. One 
does not, a priori, know the shape of the flux in each group. Some assumption must 
be made, and average cross sections computed. In principle, if the cross sections 
are well known as a function of energy, one might get greater accuracy by using a large 
number of groups and iterating on the cross sections. That is, assume some flux 
shape in each group, find average cross sections, and solve the particular “bare core,” 
getting a neutron energy spectrum. Now use this spectrum to reassign average cross 
sections in each group, and again solve the bare core problem. 

In practice, cross sections may not be too well known, and a reasonable assumption 
on flux shape is sufficient. For a fast power reactor, a reasonable flux assumption 
for our particular group structure is that the flux is constant with energy in every 
group except the 6rst while it resembles the fission spectrum in this energy region. 

It is usually convenient to assign average group cross sections to each material, 
then combine them in the appropriate proportions. This technique is accurate for 
all cross sections except transport, where some difficulties arise if there are wide 
fluctuations within a group. However, for a mixture of elements, such fluctuations 
are usually minimized, so that the transport cross section can be given the same 
averaging process as the others. 

Thus we may write the average fission cross section in group j for material z as 

I 
Ei 

Ufl.jz = 
Ei-, OFF dE 

/ 
Ei 4(E) dE 

Ei-I 

A similar expression applies for other cross sections of interest. 
For inelastic scattering, it is frequently convenient to divide the description of this 

process into two parts. First, the average inelastic scattering out of each group is 
obtained. Then a matrix of coefficients is assigned to describe where in energy these 
neutrons go. We may write 

. 
Zinz(Z + j) = Zin.ZzCf+j 

where z;,,J~ is the average macroscopic inelastic scattering cross section out of group 
for material z and 

n 

2 
CI+j = 1 

j-r+1 

The summation is over all groups lower in energy than group 1. 
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For the materials of the example and the particular group energy structure chosen, 

the elastic moderation from any group will contribute only to the group next lower 
in energy. The group cross section is, of course, a function of the average loss in the 
logarithm of the energy 5, the scattering cross section Za,, and the shape of the flux 
within the group. Again, it is possible to iterate on cross sections or to use approxima- 
tions thereon. However, the previous assumption of a flat flux in every group but 
the first is quite reasonable for this example. 

One possible method of procedure then is to compute a flux-weighted average energy 
Bj for each group. One may then write for material z 

z cl mod. jz = 
E"z.c,j= 

In Ej/Ej+I 

A final note on cross sections is that the transport cross section used in the definition 
of the diffusion coefficient (D = l/3&) is the sum of the elastic transport Z,,(l - ~0) 
and the removal cross sections. 

If one goes through the process of obtaining group cross sections and then averaging 
them appropriately in accordance with composition, one obtains a set of multigroup 
cross sections for the particular core under consideration. For purposes of illustra- 
tion. a set of cross sections representative of a small, fast power reactor will be assumed 
and’two iterations on buckling B2 will be madt ?. 

No. group 1 Ztr ) 21 1 Ze 

I 0.16 0.014 0.0010 
2 0.19 0.010 0.0017 
3 0.27 0.010 0.0025 
4 0.28 0.011 0.0037 

2 
0.35 0.016 0.0059 
0.41 0.026 0.0154 

z,. 

0.050 
0.020 
0.012 
0.007 
0.001 
. . . . . 

z.1 mod zIslno”s 

0.012 0.077 
0.006 0.0377 
0.012 0.0365 
0.009 0.0307 
0.009 0.0319 

0.0414 

The quantity Yj will be taken as 2.5 for all groups. Furthermore, for simplicity, 
it will be assumed that the matrix of coefficients which prescribes the destination of 
inelastically scattered neutrons is the same for all materials. We take these to be as 
follows: - 

From 

\ TO 
I 

0.4 
0.3 
0.15 
0. I 
0.05 

2 3 

~- 

0.65 
0.2 0.7 
0. I 0.2 
0.05 0.1 

As previously mentioned, the elastic moderation for this example is always into the 
next lower energy group, so that no corresponding matrix is required. 

One makes a first guess on B2 usually from previous experience. If no such back- 
ground exists, a rough one-group set of cross sections, averaged over composition, will 
give a reasonable first guess, using the formula 

YZf - z, 
B2 = D 

In the present example, Ba = 0.01 will be tried for the first iteration. As is shown 
in Table 15, the fission source calculated using the first set of +j’s is 1.03414. Hence, 
the result is 3.414 per cent away from convergence. A second guess of B* = 0.0105 
is made, and this time the result is only 0.95 per cent away from convergence. If 
this were not satisfactory, a third iteration would be made. 
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) -- -- -- -- I I -- .- 

.I 

I 0.47 I 0.47 . . . . . 0.47 0.48 0 .077 0.097@33 4.8041 
2 0.31 0.096032 I 0.406082 0.012 0.057649 0.463731 0.57 0 .0377 0 055244 8.3942 
3 0.11 0.072062 0.109125 0.291187 0.006 0.050365 0.341552 0.81 .0365 0.048846 6.9924 
4 0.07 0.036031 0.033577 0.058736 0.198344 0.012 0.083909 0.282253 0.84 : .0307 0.042605 6.6249 I 

Q, 
5 0.04 0.024020 0.016788 0.016782 0.037099 . . . 0.134689 0.009 0.059624 0.194313 1.05 0 ,031s 0.041424 4.6908 

I 
CL 60 0.012010 0.038394 0.008391 0.009275 0.004691 0.042761 0.009 0.042217 0.084978 1.23 0 .0414 0.049530 I.7156 
A 

jl +2,.+pi= I.0341 / 

I 

Table 16. Bare Core Multigroup Calculations 
- - - - - - - 

j-l I I 
Cd. 7 

j Ti 2,dl-.JF+l I L(2-j)C :in(3+j)‘$ ,I : Ei.(4-j)3' I z :d5 -+Jhbl i 7 j+ C Z,.(i-Jb#h x.1 mod.j4 4 +12.1 r,"d.j-* -I- 

i=l I I 3Xrr.i zI.j 
cd IO 'j = __ 

cd. 9 cd I3 / 

l_lm! I,,,:“,; ,/ L , .r /,: ,_ :_,,1 ,,,.:, IA, ,: .,,l, ‘y !,‘i : 
‘, a,, 

,, ,,,,A , 1 ,!, ! A. I# I.7 .::..A,,.~‘:,‘ ~ 1 ., ,, k,,f,d :;A.,, ,, ‘:. , ,’ N,‘,:,: .!“.r!.r,:.r.!t . .._. A* t” :, :,,s ,.’ 
..~..L_,J ,+2&d 

Second iteration. Ts I B9 =0.0105 
I 0.47 0.47 . . . . 0.47 

1: 

0.098875 4.7535 
2 0.31 0.95070 0.4OLio70 0.012 0.057042 0.462112 0.056121 8.2342 
3 0.11 0.071302 0.107045 0.288347 0.006 0.049405 0.337752 0.049463 6.8284 
4 0.07 0.035651 0.032937 0.057359 . 0.195947 0.012 0.081941 0.277888 0.043200 6.4326 

\:, i.04 0.023768 0.016468 0.016388 0.036023 0.132647 0.009 0.057893 0.190540 0.041900 4.5475 

o.011i84 
0.008234 0.008194 0.009006 0.004548 0.041866 0.009 0.040928 0.082794 . .._ 0.049937 1.6580 

Jl Gl.i*i = 1.0095 

- !- I I - - - - - 

. 
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11 SAMPLE CALCULATIONS 

The following calculations illustrate the procedures involved in calculating the 
material constants and reactivity for a typical lumped reactor. Since the purpose 
is to illustrate procedures rather than to arrive at very accurate results, the numbers 
involved are carried out to slide-rule accuracy. In making practical calculations it 
will usually be found desirable to use a desk-type calculating machine and to carry 
more significant figures, particularly in calculations of the type covered in Arts. 11.5 
and 11.6. 

Again, to illustrate procedures, values of some of the reactor constants are cal- 
culated even though applicable measured values exist. It should be remembered 
that the methods used here are only approximate, and when great accuracy is required, 
measured values must be sought or’higher order approximations to transport theory 
must be used. 

11.1 Description of the Reactor 

The sample reactor is taken to be one moderated by DZO, using as fuel natural 
uranium in the form of circular rods 2 cm in diameter, canned in aluminum of 0.05-cm 
thickness. The rods are arranged in a triangular lattice, with uniform spacing of 
16 cm (Figs. 16 and 17). The core of the reactor is a circular cylinder, 200 cm in 
diameter and 200 cm high, and is surrounded 
on all sides by a reflector of pure D20, 30 cm 
thick (Figs. 18 and 19). The reactor is assumed 
to be at room temperature. 

The area of the triangle drawn in Fig. 17 is 
119.9 cm*. The moderator contained in a tri- 

0 

FIG. 16. Section of reactor for sample calculations. FIG. 17. Cell arrangement for sample 
calculations. 

LD,O REFLECTOR 
44 
h1,0 REFLECTOR 

FIG. 18. Horizontal cross section of sample FIG. 19. Vertical cross section 
reactor. reactor. 

sample of 
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angular prism of this cross section and unit height is associated with the volume 01 
uranium contained in half a fuel-rod section of unit length (1.571 cm3) and with the 
volume of aluminum making up half a can of unit length (0.16 cmJ). From these 
numbers the volume ratio of moderator to fuel and the radius of the equivalent circular 
cell Rz can be computed. These quantities, the atomic density in the uranium region 
NI and m the aluminum region Na, and the molecular density in the moderator 
region Nt are tabulated below. 
that of D20 as 1.10 g/cm’. 

The density of uranium is taken as 18.5 g/cm3 and 

Vol. D20 110.9 - 1.571 - -= 0.16t Vol. u = 1.571 6g 4 

yo:o'. Al (d(2)(0.05) = o 1o 
Vol. u 7r(l)* . 

I& = 1.00 cm 

Rz = 
(2)(110.9) 

= 8.41 cm 
x 

N, = (18.5)(0.603 X 1024) 

238 
= 0.0469 X 10%’ atoms/cm3 

N, = (1.10)(0.603 X lo*‘) 

18.0 
= 0.0368 X 102* molecules/cm3 

N3 = (2.70)(0.603 x 10z4) 

27.0 
= 0.0603 X 10”’ atoms/cmJ 

11.2 Infinite Multiplication Constant k 

11.21 Regeneration Factor 7.1 
number 28; then 

Designate U*3s by the number 25 and U23* by the 

4WW25) 
' = x,(25) + &,(28) 

by Eq. (169) 

v(25)Nzsuf(25) 4W~A25) 
= Nw.GW + NzwnCB) = oa(25) + (N~a/N&o(28) 

(2.46) (0.081) (580) 
= (0.981)(687) + (0.993/0.00715)(2.75) = l’326 

11.22 Thermal Utilization j: 

2,1 = N,[0.00715~,(25) + 0.993u,(28)] 

= 0.0469 X 1024[(0.00715)(0.9Sl)(687)(10-2’) + (0.993)(2.75)(10-s’)) A8 

= 0.314 

ISee Eq. (65).] 

z: At, 
"'=3L2(D20)= 

2.65 
------ = 6.57 X 10-s cm-1 
WOW” from Table 13 

I& = Nw,(AI) = (0.0603)(10z4)(0.230)(10-~4) ( k8) = 0.0123 cm-r 

.I An inconsistent number of significant figures is cnrried in the,equstiona to aid the reader in recog- 
numg the numbers. 

$ All cro88 sectiona are from BNL-325. 
‘I, the 2,200-m/~@ ~03~ sections can be 

S’ mce only ratios of or088 sections are involved in computing 
used instead of values averaged over the Msxwell distribution. 

However,, it ia necesaar~ to include the correction (0.981) for the departure of the G)a cross sections from 
a llv vsrmtion (see BNL-325). 



REACTOR CALCULATIONS 

1 1 18.5 x, = - = - - = 0.632 
Ll 1.55 18.9 

1 1 
= 0.00862 x2=~=~6 from Table 13 

x,R, = (0.632)(l) = 0.632 xzR2 = (0.00862)(8.41) = 0.0725 

2 
x2R1 = (0.00862)(l) = 0.00862 

m(Rz - R12) = (0.00862)(8.41)z - (l)* = o.601 

RI (lj2 

E = 4Rz 2 - R12) Z,(x~R~)Z~,(x~Rz) + Ka(xrRdZ,(mRd 
from Table 8 

2R1 Z1(x2R2)K1(mRl) - KI(H~RP)Z~(HPR~ 

0.601 Z,(O.OO862)K,(O.O725) + ZMO.OO862)Z~(O.O725) 
= --$- Z,(O.O725)K,(O.O0862) - K,(O.O725)Z,(O.O0862) 

(1.000) (13.70) + (4.87)(0.0363) = 1.0067 
= o’301 (0.0363) (116) - (13.70) (0.00431) 

F = + ZohRd 0.632 Zo(0.632) = o 316 1.1024 
- = 1.049 

2 Z,(dd =21,0 . 0.332 

1 _ = 1 + V2& + V8L3 

f VI& 
F + (E - 1) from Eq. (190) 

;=1+ (6cw6.57 x lo-‘) + (o.~w.~w 
(1)(0.314) 1 . (1 04Q) + o oo67 = 1 ozG1 

f = 0.9746 

11.23 Resonance Escape Probability (p): 

x1 = (0.0222)(18.5) = 0.411 cm-l from Table 10 
x2 = (0.141)(1.10) = 0.155 cm-l from Table 11 

. x,R, = 0.411 xzR2 = 1.304 >ctRl = 0.155 

E = 0.155 (70.7 - 1) Zo(O.155)K1(1.304) + &(0.155)1,(1.304) 

2 1 Z1(1.304)K1(0.155) - K,(1.304)11(0.155) 

(1.006) (0.370) + (2.00) (0.801) 
= 5’40 (0.801)(6.26) - (0.3703)(0.0777) = 2’13 

F = 0.411 Zo(O.411) 0.411 1.043 - ~ = - - = I.020 
2 Zl(O.411) 2 0.210 

s surfs,& area of U 2rRl 2 2 -= =- =- 
M mass of U 

= - Rlp (1)(18,5) = 0.108 cm*/g 
TR,% 

I u,,,,(E') s = A + /L; = [9.25 + (24.7)(0.108)](10-2’) 

= 11.92 X lo+ cm2/U238 atom by Table 9 

N28 = N1(0.993) = (0.0469 X 1024)(0.993) = 0.0466 X 10z4 atoms/cm’ 
.$J. = 5.28 X 10ez4 cm*/DsO molecule by Table 11 
& = (5.28 X 10-aa)(0.0368 X 10z4) = 0.194 cm-l 

1 

V2 @SF 
v, Nw.hs,,(E’) @E’IE’) 

+ (E - 1) 1 by Eq. (206) 

1 

(69.4)(0.194) (1.020) 

I 

= e-O.O387 = 0,962 

(0.0466 X 102’)(11.92 X 10-24) + 2’13 - ’ 
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11.24 Fast Fission Factor t: 

[SEC. 6 

= 0.632 from Table 13 

Zt = (0.0466)(4.3) = 0.200 
Zf = (0.0466)(0.29) = 0.0135 

2.1 = (0.0466)(1.5) = 0.070 
2, = 0 

Y = 2.55 

Xl 0.632 -...=- 
21 0.200 

= 3.16 

P’ = 0.2-l P = 0.21 from Fig. 15 

E _ 1 = Iv - 1 - G/~/)l(~,l&)P 

1 _ (YZ/ + Z.z) p, 
by Eq. (207) 

& 

= (2.55 - 1)(0.0135/0.200)(0.21) 

l _ (2.55)(0.0135) + 0.070 (o.21) = o’025 
[ 0.200 1 

11.26 Infinite Multiplication Constant k: 

k = wpf = (1.326)(1.025)(0.962)(0.975) = 1.275 

11.3 The Diffusion Coefficients Df and D. 

Since the volume of metal in the reactor core is less than 2 per cent of the total 
volume, the effect of the metal on the diffusion coefficients is neglected, and D, for 
both core and reflector is taken from Table 13: 

D * rz i!! = ?I!% = 0,883 
3 3 

D, may bet omputed by Eq. (213). It is evident, however, from the cross section 
curves for D and 0, that the average values for the scattering cross sections between, 
say, 2 Mev and thermal energy are very nearly 

a.(D) = 3.4 x 10-Z’ a,(O) = 3.G x 10-24 

using these average values: 

1 

11 - /h(D)lWD) + 11 - fio(O)]z.(O) l 

where 2 

p0 =2x 
by Eq. (11) 

1 - P,(D) = 0.666 1 - P,(o) = 0.958 

D, = 1 
C 

1 
3 (0.666) (0.0368 X lOad) (2) (3.4 X lo-*‘) + (0.958) (0.0368 x 10z4) (3.6 x 10-2’) 

= 1.14 cm 

11.31 The Diffusion Area L* and Age r. By Eq. (211) 

La = L?(l -f) = (116)*(0.0254) = 342 cm* 

The age 7 for the metal-D20 mixture can be taken to be the same as that for D?O. 

7 

1 
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From Table 14, 
7 = 125 cm 

11.4 The Material Buckling B,Z 

The material buckling is given by the modified one-group equation as 

&,,z = !?$ = g = 5.89 X lo-” cmF2 

This is a relatively large value for which the modified one-group equation can be 
expected to give only a fair approximation. The characteristic equation based on the 
Fermi age equation is a much closer approximation: 

(1 + L*B*)erB* = k 

This equation can be solved by trial and error or otherwise to give 

B,2 = 5.50 X lo-’ cm-* 

11.6 Critical Size of Bare Reactor 

This quantity is not required for the solution of the problem under consideration, 
but the computation is included for the sake of complctcness. If the reactor is 
assumed cylindrical in shape, the ratio of length H to radius R must be specified 
arbitrarily. Assume here that it is 2. 

B,1 = $ + (@!$i! from Table 5 

B,2 = B,2 = 5.50 X 1O-4 cm-* by the criticality condition 

R* = 
1 f + (2.405)’ 1 = 1.500 x 104 

. 5.50 x 10-d 
R = 122.5 cm H = 245 cm 

11.6 Reactivity of Reflected Reactor 

In the following, the method of Art. 7.1 will be employed. Since the two-group 
formulation is less accurate than that of the Fermi age for DrO-moderated reactors, 
the first step will be to determine an effective slowing-down area Lf which will make 
the two-group material buckling equal to the Fermi age material buckling, i.e., 

(I + L*B2)(1 + L,2B*) = (1 + L2B2)er’9Z 
@= - 1 

j5,2 = ___ 
0.0735 

B2 =r ___ 
3.50 x 10-d 

= 134.5 cm* 

Since the problem must be reduced to a one-dimensional problem, the choice is 
arbitrarily made to examine first the radial solution, using an estimated equivalent 
bare reactor solution in the axial direction. A guess is made for the axial reflector 
saving. Because DzO is a good reflector, a reasonable guess for the reflector saving 
on each end of the core would be just slightly less than the actual reflector thickness- 
say 25 cm. The first estimate (which will be reexamined later) for the partial buckling 
in the axial direction is, then, 

Axial partial buckling = [200 + 2(25))2 = 1.580 X lo-’ cm+ 
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The remainder of the problem consists of adjusting one or more of the reactor 

constants to a value which will make the critical determinant [Eq. (144)] vanish. 
In the following, k, the infinite multiplication constant, will be varied arbitrarily to 
achieve this condition. Although such a variation of k alone is not a physically 
possible procedure (e.g., if k were changed by changing fuel enrichment, L2 would 
also change), the determination of the critical value of k is a useful operation, since a 
comparison of k (critical) with k (actual) yields a determination of the reactivity 
of the system. 
chosen. 

TO proceed with the calculation, a trial value of k must be arbitrarily 
Since DzO is known to be an effective reflector and the reflector is relatively 

thin, a reasonable first choice is that value of k which would make the reactor critical 
if the reflector saving were equal to the reflector thickness. This value of k should be 
near the true critical value, but almost certainly a little too small. Thus the direction 
to go in choosing a second trial value of k will be known. 
value is k = 1.245. 

The specified first trial 

In Table 16 are listed constants which will be used in the calculation; these have 
been evaluated in the preceding sections or are derived from constants evaluated 
there. The notation is that of Art. 7. The slight variations from previous notation 
are necessary to avoid an excessive number of subscripts in writing the complex 
equations involved. 

Table 16 

Core constants 

k = I 245 (trial val:y ‘) 
R, = ‘100 cm 
Ll, = 342cm* 
L,j = 134.5 cm~ 
D,, = 0.883 cm 
D,/ = 1.14 om 
21, = Da/L,* = O.O0258cm- 
Z,j = D,/Lp = 0.00848 cm-1 
x,.2 = l/L.2 = 0.00292 cm-2 
Y,j~ = I jLj= = 0.00744 cm-2 
B1z = 4.88 x IO-‘cm-? 

1%. (lo9)l 
B,'s = -0.01085 cm-2 

[Eq. (IlO)] 

RJector constants 
(r.qJion 2) 

RS = 130 cm (Fig. 5) 
Lz.2 = (ll6)a = 13.450 cm* (Table 13) 
Ltf' = 134.5 cm2 
Da = 0.883 cm 
Ds/ = 1.14cm 
ZI, = 0.656 X IO-'cm-1 
22, = 0.00848 cm-' 
I$ 1 :,:7;; JCJy; cm-l 

Bz2 = --~~a2 = -0.744 X IO-4 cm-: 

&‘2 = --x 2j2 = -0.00848 cm-1 

1= = BIG- H + 2RS ( -"-)I = B,z - 1.550 x 10-r -p,2 = BG - I.580 x IO-1 = -2.324 x IO-4 

= 3.30 x 10-t 
-m' = BP - 1.580 X IO-' = 0.01101 

s 
I 

= 21s + Ddi= 

a/ 
= 0.355 

s,, = Z'ia + D&I" 
= 0.826 

al 

IR, = 1.818 
mR, = 10.50 

--pjl = Bz'f - 1.580 x IO-4 = -0.00864 

&' = 
Zh. - Dzaxzj2 

w 
= -0.767 

prR, = 1.525 
,,,R, = 9.30 . 
r.Rt = 1.983 
G/R2 = 12.10 

The following Bessel functions will be needed to evaluate the critical determinant: 

J,(lR,) = Jo(1.818) = 0.3295 J,(UZ,) = 0.5818 
Zo(mzL) = Zo(10.50) = 4,500 
Z&R,) = Zo(1.525) = 1.672 

II = 4,280 
I~(/.&,) = 1.0067 

Z,(/&,) = Zo(1.983) = 2.253 
zo(pjR1) = Zo(9.30) = 1,447 
l,,(~~Rn) = Zo(12.10) = 2.078 x lo4 

Z,(rtfL) = 1,366 

Ko(p&) = Ko(1.525) = 0.2070 K~(/.&) = 0.2676 
Ko(&,) = Ro(1.983) = 0.1163 
K&R,) = Ko(9.30) = 0.372 X lo-’ K,(pfR,) = 0.392 x IO-’ 
Ko(pjR2) = Ko(12.10) = 1.990 x 10-B 
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Putting in the numerical values yields 

0.3295 4,500 -0.1207 -0.371 x lo-’ 
D 0.1170 = -3,715 0 0.285 x lo-” 

0.00934 -397 -0.004304 -0.0322 X lo-’ 
0.00428 423 0 0.0319 X 10” 

[SEC. 6 

The determinant may be evaluated by expanding by minors. The result is 

D = 0.0825 X lo-’ 

Since D is not zero, the assumed value of k is not the critical value. A larger value 
is chosen for t.he second trial. This is arb’t 1 rarily taken to be the actual k of the 
reactor core material (k = 1.275). Note that only the elements of the first two 
columns of the determinant must be recomputed. The new value of the determinant 
is D’ = -0.095 X lo-“. Linear interpolation between D and D’ yields, for the value 
of k which will make the determinant zero, k(0) = 1.259. If an extremely accurate 
value of k(0) is required, a third trial computation should be made, using the value 
1.259 for the trial value of k. The third trial will not be made here. 

The value of k(0) is not an accurate value for the critical k of the actual reactor 
but is the critical value for the reactor which has the assumed equivalent bare dimen- 
sion in the axial direction [H (equiv) = 250 cm]. The useful quantity which can be 
evaluated with some precision is the radial component of the buckling. The critical 
material buckling of the assumed reactor is given by 

B1 = - (~1,~ + x,..*) + + x,,*)” + 4x,j2ma2[k@) - 11 
2 

= 5.20 X 10e4 cm* 

The axial buckling of the assumed reactor (~/250)~ is 1.58 X 10e4 cm2; hence the 
radial buckling of the critical reactor must be 

Radial buckling = 5.20 X 10d4 - 1.58 X lo-* = 3.62 X lo-’ 

and the equivalent bare radius of the reflected reactor is 

R (equiv) = d3.iit lo-; = 126 cm 

To obtain an accurate specification of the criticality condition, one must solve the 
problem of the cylindrical reactor, bare radially and reflected on the ends (Art. 7.2), 
using the above value for the equivalent bare radius. If reasonable guesses were 
made originally for the axial reflector saving, the two computations (one radial, one 
axial) should suffice to determine the critical value of k. If a very poor initial guess 
was made, a second radial computation may be necessary, since the two components 
of the buckling are not completely independent. 

A reasonably accurate va.lue for the critical k can be obtained without resorting 
to the axial calculation by assuming that the axial reflector saving (on each end of the 
core) is equal to the computed radial reflector saving. This is a rather good assump- 
tion if the reflector saving is considerably less than the core dimensions (provided, of 
course, the materiais of axial and radial reflector are identical). The computed 
radial saving is 

RS = R (equiv) - R (actual) = 126 - 100 = 26 cm 

The equivalent bare height of the reactor is, then, 

H (equiv) = 200 + 2(26) = 252 cm 

The corresponding buckling is 
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and the critical value of k is given by 

k (crit) = (1 + 3) (1 + 5) = 1.259 

Because the original guess for the axial reflector saving was quite close, the value of 
k(crit) agrees with that of k(0) to within the accuracy of the computation. Obvi- 
ously, a change of a centimeter or two in reflector saving has no very great effect on 
the reactivity of a large reactor. 

The original problem undertaken was to calculate the reactivity of the specified 
reactor. This is most conveniently expressed in terms of the excess reactivity 
SrC,~,/k.,,, which is given by Eq. (261): 

8kerf _ Sk ---...-z k (actual) - Iz (crit) = 1.275 - 1.259 = o,0125 

k.u k 1~ (actual) 1.275 

If it is necessary to make the reactor exactly critical, one or more of its character- 
istic properties (e.g., size, enrichment, lattice spacing) must be altered. In making 
such adjustments, if they do not change k.ff by more than 2 or 3 per cent, and if they 
do not alter the moderator density, it is usually safe to assume that they will not 
affect reflector savings appreciably. 

11.7 Solution by Matrix Method 

To illustrate the use of the matrix method of solution outlined in Sec. 8, the problem 
of the preceding section will be re-solved by that method. The same first guess will 
be made for k(1.245), and all the constants listed in Table 16 will be applicable. 

In order to construct the & matrix for the reflector, the following elements are 
evaluated, using the constants of Table 16 in the expressions listed in Art. 8.2: 

~O(~f~l)~&f~2) = 8 79 

Kl(Pfnz)~l(~f~l) . 

K~W-WZohRz) 

1 _ K&,Rz)~L&R,) 

K~WL~ZO(P~RZ) = 28 o6 

’ 
. KlwL)~O(P~~?) 

dPf,d = &. Q(Pf) - dh’ = 16.87 

The Q matrix is (Art. 8.2): 

Since there are only two regions involved in the problem, the Y, matrices for mter- 
mediate regions are not required. The following elements arc needed for the core 
matrix Y,,,, (Art. 8.4): 

I 1 -=- XE 2.818 2. = 1 = -1.210 
81 0.355 81’ - 0,826 

II m-w 
D,fX,(m) = Dlfm- 

Zo(rnR~) 
= 0.1138 

-0.1067 

DlfX,(Z) = 1.14x,(1) = 1.14$# 

2 X,(l) = 2.49%(l) 
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Note that although quantities are available in Table 16 for evaluating X,(I), we 
choose to retain it as a variable for the time being. The core matrix is, then, 

I 1 1 B 

Y 2.818 - 1.210 
Core = -1.14X,(Z) 0.1138 

-2.49X,(1) -0.1067 I 

The product QY,,,, is formed,t giving the matrix 

QYm = 
I 

1 - 10.14X,(Z) 2.013 
2.818 - 89.0X,(l) -2.300 I 

The condition for criticality is that the determinant of the QY,,,. matrix be zero 
i.e., 

1 - 10.14X&) 2.013 = o 
2.818 - 89.0X,(I) -2.300 

The course chosen here for determining criticality is arbitrarily to set the determinant 
equal to zero and solve for X,(Z). This specifies a value of 2 which will make the 
determinant zero. If the value so determined agrees with the trial value (Table 16), 
the condition of criticality has been determined. If it does not agree with the trial 
value, criticality has not been found, since no value of 1 other than the trial value is 
consistent with the other quantities used in the Y,,,. matrix. 

Expanding the critical determinant yields 

JIWI) X.(Z) = 0.0394 = Jo(lRI) 

The above equation can be solved quickly by trial and error, giving 

2 = 0.01902 

which differs from the trial value. The easiest procedure now is to use this value 
(0.01902) as a new trial value, recompute all the elements of the Y,,,, matrix, take 
the product QY,,,, and test again for criticality. To determine the new elements 
consistent with the new trial value, recall that 

B12 = 12 + (es 
) 

2 
= 22 + 1.580 x lo-’ 

etc. 

231’2 = - (B,Z + xly + Xh2) from Eqs. (109) and (110) 
??L2 = -z31’2 + 1.580 x 10-d 

The new core matrix is 
1 1 

2.79 - 1.206 
Y core = -1.14X,(Z) 0.1138 

, -2.45X$) 0.1064 

Formation of the product QY,,r. and determination of the value of X,(I) correspond- 
ing to a zero value of the determinant give 

X,(l) = 0.0392 1 = 0.01900 12 = 3.61 x lo-’ 

t The product of two matrices, for example, 

a=lEf; it; #tndb=I$ kl 

is defined as 

ab = (atrb,, + atzb,, + atabs,) 

I 

(a,,b,, + atrb,, + a,,bt,) (anbn + anbm + mrbsd 
(arlbn + asabzt + mabad 

(onb,, + artbm + arrb,,) (aribn + arsbzo + aasbrd 

Two matrices can be multiplied only if the number of columna of the first is equal to the number of 
rows of the second. 
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This value of 1 is sufficiently close to the trial value to make further iteration 
unprofitable unless the computation is carried to larger numbers of significant figures; 
it is, incidentally, in satisfactory agreement with the value obtained in the previous 
calculation (Art. 11.6). 

The critical value of k may be determined by adding to l2 the value of the axial 
buckling (1.580 x 10--4), to obtain Blz, and solving for k in Eq. (109). 

12 LUMPED THERMAL ABSORBERS IN THE REACTOR 

Many practical cases arise in which it is necessary to know the effect of an absorbing 
object of macroscopic size in the reactor. Typical cases are slugs for the production of 
radioactive isotopes, experimental apparatus for investigation of radiation effects, 
and control rods. 

Usually the information desired is the rate of absorption of neutrons in the absorber 
for a given level of average neutron flux in the reactor. Often the effect of the 
absorber on reactivity is also desired. It is always true that if the absorber has 
macroscopic thermal absorption cross section Z (1, and if the thermal neutron flux 
is +8 at some point in the absorber, then the rate of absorption per unit volume at 
that point is 

Rate of absorption = 2,+, neutrons/(cm2) (set) (222) 

Unless, however, the absorber is both small and only weakly absorbing, it cannot be 
assumedt that the flux at the absorber position is the same as that which would 
exist at that position if the absorber were absent. In general the absorber will depress 
the thermal flux in its vicinity, and the true rate of absorption can be determined only 
by a computation which evaluates the effect of this flux distribution. 

A general treatment of the absorber problem is impractical here, for on the one 
hand, diffusion theory is inadequate for the treatment of very small (but highly 
absorbing) absorbers, while on the other hand, the treatment of large absorbers can 
become very complex if the geometry of the absorber-reactor combination lacks 
symmetry. Some relatively simple but useful specific cases are treated below.1 

12.1 Absorbers in Infinite Medium 

The computation of absorbers of simple shapes in infinite diffusion media is rela- 
tively simple. For these cases the absorption rate is evaluated in terms of the thermal 
neutron flux in the medium infinitely far from the absorber. In many cases this 
computation can be used as an approximation for the more difficult case of the 
absorber in a finite reactor by methods discussed below. 

To evaluate the absorption we consider the two-region problem, the absorber 
being region 1, the infinite diffusion medium being region 2, and the origin of coordi- 
nates being at the center of the absorber. There is a uniform source of thermal 
neutrons of strength S1 neutrons/(cm3)(sec) in region 1 and a uniform source of 
strength 82 neutrons/(cmY (set) in region 2. Practically, St and S2 are just the slow- 
ing-down densities into the thermal-neutron group in region 1 and region 2, respec- 
tively. For the infinite medium, since all neutrons slowed down are eventually 
absorbed, & = &,~sz, where & is the value of the thermal flux infinitely far from 
the absorber and & is the macroscopic absorption cross section in region 2. It is 
assumed that the absorber is small enough that it does not produce a significant 
perturbation in the fast neutron density.§ If, then, for example, the slowing-down 
properties of the absorbing material are the same as those in region 2, S1 = &. A 

t The assumption is very poor if the absorber thickness is comparable to en absorption mean free 
path. If the thickness ia equal to a small fraction e of an absorption mean free path, then the assumption 
of no perturbation of tlur by the absorber will lead to B fractional error of the same order of magnitude 
8s e. 

$ Many caaea of thermally black cylindrical absorbers are treated in Ref. 12. 

0 That is, ita smallest dimension is a small fraction of B slow@-down length (4) in the absorber 
material. If this condition is not met, the fast flux distribution must be taken into account by, for 
example, a two-group calculation (see Art. 11.22). 

--- -.-- -_.-_ ---.. -... ----.-~.~ --; -~:.L~-~ .~ - -____-~-~- . - 
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case of frequent occurrence is that in which the absorber is a material of much higher 
atomic weight than that of region 2. In such a case, S1 may be taken t,o be zero. 

Under the conditions outlined above, the thermal-neutron flux in both regions 
satisfies the equation (the group notation of Sec. 7 is used here) 

D, v=+, - z.+h + S = 0 

or V~, - 24, + ; = 0 (223) 
8 

where D, and 2. are the diffusion constant and the absorption cross section, respec- 
tively, for thermal neutrons in the appropriate region and 9 = Z./D,. 

For an absorber in the shape of an infinite slab of half thickness T or an infinitely 
long cylinder of radius R or of a sphere of radius R, the thermal fluxes 451 and 4*? in 
regions 1 and 2, respectively, are given by equations of the form 

4.1 = +X + $ 
IS 

4.2 = .42Y + $ 
82 

(224) 

(225) 

Table 17 gives the values of the constants -41 and A2 and the functions X and Y for 
the three geometrical cases. 

Table 17. Flux Distributions for Absorbers in an Infinite Medium with Uniform 
Source of Thermal Neutrons 

TYW 

Slab 

Cylinder 

Sphere 

Slnb 

Cylinder 

Sphere 

.- 

c 

i 

Region I 

Sl +.a, = A2 + z 

. x 
cash XIZ 

ldxd 

sinh XII 

, 

S?& - SI/ZS, 

ash m!Z + (D,,x~/D.,xr) sinh x12’ 

&/2., - Sl/Z., 

b(w~R) + (D,,w~/D.,wS[Ko(xnR)/Xt(wzW)lh(xlR) 
Sr/Z., - Sl/Z., 

sinh mR)/R + [D.,(Rm cash x18 - sinh XIR)/D~~R(I + mR)l 

Region 2 

+s2 = AzY + L 
& 

cash x2t - sinh Y?Z 

Kdxrr) 

cash XV - sinh WI __~ 
I 

AID~,xI sinh KIT 

- &x&ah x0 - sinh ~2’7) l 

_ AID.,x,I,(xIR) 
Ds~xzK~(xzR) 
AID*,(RxI cash mR - sinh mR) 

- D&l + mR)(cosh x?R - sinh ntR) 

The relation for the flux in the absorber having been established from Table 18, 
the rate of absorption at any point in the absorber can be computed by Eq. (222). 
If, however, only the total rate of absorption by the absorber is desired, it may be 
evaluated by taking the derivative of the flux at the absorber surface and computing 
the density of neutron current into the absorber by Eq. (5): 

J = -D grad 4 neutrons/ (cm*) (set) 

For the one-dimensional cases considered in Table 17, grad 4 is just d4/dx for the 
slab and d4/dr for the cylinder or sphere. 

If the absorber is “black” to thermal neutrons, both 2,1 and x1 in Table 17 become 
infinite. If the equations are used for such a case, the extrapolation distance e should 
be applied (Art. 2.22). The effective boundary between regions 1 and 2 then lies 
at T - e or R - c, az the case may be. For black boundaries of large curvature the 
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more rigorous boundary condit.ion is, however, 41’/+2 (boundary) = l/c. Table 18 
gives the flux distribution in region 2 with this condition for the three absorber shapes 
considered. The table also gives the current density into the absorber surface. 

It is evident from Table 17 that the effect of the absorber on the flux in medium 2 
falls off rapidly with increasing X~T (or r/L, where L is the diffusion length) and, even 
for black absorbers, becomes small at about three diffusion lengths from the absorber. 
The infinite-medium case may be used as a reasonable approximation to the case of 
an absorber in a finite reactor provided the undisturbed flux distribution in the reactor 
(i.e., the flux distribution before the absorber is installed) does not amount to a large 
flux variation over the region in which the absorber, when installed, will influence the 
flux distribution strongly. The infinite case is often used as a rough approximation 
even when this condition is not fulfilled. When the finite approximation is used, 
it is common practice to assume that the equivalent uniform source strength S2 for 
the infinite case is just equal to the undisturbed slowing-down density at the point 
in the finite reactor where the absorber is to be installed. An alternate procedure, 
which makes some allowance for the leakage of thermal neutrons out of the reactor, 
is to evaluate an effective source strength by setting & = &z, where 4 is the undis- 
turbed thermal-neutron flux at the point where the absorber is to be installed. In 
either case a more accurate procedure (frequently not justified because of other 
inaccuracies) is to use, for the equivalent infinite value of SZ, the average value 
obtained by averaging numerically the value of S2 for the undisturbed finite reactor 
over a region extending two or three diffusion lengths around the point of installation 
of the absorber. 

be 
A rough estimate of the effect of the absorber on reactivity of the finite reactor can 
derived from solution of the infinite case if the spatial perturbation relations are 

utilized (see Sec. 14). A possible procedure is as follows: 
1. Evaluate the absorption rate a of the absorber. If the absorber is a sphere, a 

would be the total absorption rate; if the absorber is a cylinder, a would be the absorp- 
tion rate per unit length. 

2. Compute an equivalent thermal absorption cross section Z., where 

2. = 
a 

4 X (vol. of absorber over which a is computed) 
(226) 

and 4 is the average thermal flux in the undisturbed reactor in the region where a is 
computed. 

3. The absorber can then be treated, by perturbation theory, as an absorption cross 
section of magnitude 2., distributed in the reactor over the volume occupied by the 
absorber. 

. 
12.2 Absorbers in Regular Array 

Occasionally the case occurs in which identical absorbers are arranged in a regular 
or nearly regular array over the reactor or over some region of the reactor. For such 
a case the absorbers can be treated by the same methods as those used for calculation 
of the thermal utilization in a lumped reactor in Art. 9. First the region occupied 
by the absorbers is divided into cells symmetrical about the absorbers; the approxima- 
tion is then made that the region occupied by the cells is infinite in extent. A “thermal 
utilization” f.ba is then computed for the absorbers in exactly the same way as the 
thermal utilization f was calculated for fuel lumps (Art. 9). Usually for these cases 
the total absorption of thermal neutrons by the absorbers is small compared with that 
of the other reactor materials. When this is the case, the relation can be written 

Absorption by all other materials (including fuel) 

Absorption by “lumped” absorbers 

1 _ I 

= z f 
and an equivalent absorption cross section & can be assigned to the lumped absorber. 
The quantity Z. is that cross section which, if treated as uniformly distributed, will 
result in the same fractional neutron absorption as that of the lumped absorbers. 
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2s = &*Ct”I ($ - 1) (227) 

SEC. 6-21 

It is given by 

where &.ctoT is the total absorption cross section (or, in the case of “lumped” reactors, 
the effective absorption cross section) of all materials except the absorbers in question. 
After the effective cross section is determined, the absorbers may be treated as uni- 
formly distributed, with absorption cross section 2,, for computation of both their 
total absorption and their effect on reactivity. 

Frequently the region occupied by the array of absorbers does not extend over the 
entire reactor core but is symmetrically located in the core. In such a case, the 
properties of the region occupied by the array can be computed as indicated above, 
and the reactor may be computed as a symmetrical, multiregion problem, using the 
methods illustrated in Art. 7. Often the use of reflector savings will reduce such a 
problem to a two-region problem. 

In the case of absorbers “black” to thermal neutrons the cell problem of most 
frequent occurrence is one which is symmetrical in cylindrical coordinates. In this 
case, the problem and its solution are stated as follows: 

The absorber is a cylinder of radius RI; the surrounding “cell” has radius R2. 
In the surrounding cell, there is a source density of thermal neutrons, assumed to 
be of uniform strength = q neutrons/(cm3)(sec). This source is just equal to the 
slowing-down density into the thermal energy group. The source strength is taken 
to be zero in the absorber. The boundary condition at the absorber surface is 
(l/+)(d+/dr) = I/B, where $I is the thermal flux density and e is the extrapolation 
distance (see Art. 2.22). The thermal flux + in the cell outside the absorber is a 
function of the coordinate T, measured radially from the center line of the absorber, 
and follows the equation 

VqJ - x’c$J + 5 = 0 

The solution is 

+(r) = G[K~(xRz)Zo(xr) + Z,(xRdKrh~)l f: 
II 

where 2, is the macroscopic absorption cross section for thermal neutrons in the 
material surrounding the absorber and G is a constant whose value is given by 

Q/.% 
G = ex[K&xRr)Zl(nRd - Z~(HR~)K~(XR,)] - [KI(xRz)Z&Rd - ZI(XR~)KO(XRI)] 

The current density into the absorber is 

Dq 
J(R1) = - ; z 

1 
' + &[Kl(,tR,)Z,(xR,) - Z,(xR,)K,(xRdl _ 1 

K,(xRz)lo(xR~) + Z~(xRr)Ko(xRd I 

where D is the thermal-neutron diffusion constant in the material outside the absorber. 
The ‘I thermal utilization” foe. of the absorbers is given by 

faaa = ‘JrRJ(RJ 
qr(R? - RI*) 

12.3 Central Absorber in Bare Reactor 

If the absorber is so shaped that the geometry of the absorber-reactor combination 
exhibits a high degree of symmetry, the problem can often be solved in as much 
detail as is desired by use of the group methods. The problem of this type which 
occurs most frequently is that of a central cylindrical absorber passing axially through 
a cylindrical reactor. The solution for such a system, treated by the two-group 
approximation, is given in Art. 7.5. The case of a bare reactor is considered. If a 
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reflected system is to be computed, the reflector saving can be computed first without 
the absorber and can be assumed to be unchanged by the presence of the absorber. 
This assumption is adequate unless the absorber diameter is an appreciable fraction 
of the reactor diameter. 

The procedure is to solve the criticality problem for the reactor containing the 
absorber. The rate of absorption in the absorber can then be evaluated, if desired, 
from the thermal flux distribution which is obtained in arriving at the solution. The 
effect of the absorber on reactivity can be found by comparing the criticality condi- 
tion (e.g., critical k,) of the reactor containing the absorber with that of the reactor 
without the absorber. 

13 NONCRITICAL REACTORS 

If the neutron balance in a reactor is such that exactly one of the neutrons emitted 
in a typical fission reacts with a fissionable atom to produce a subsequent fission, the 
reactor is said to be critical. If in a critical reactor there are no extraneous sources 
of neutrons, the neutron population will remain constant in time. This section deals 
with the behavior of reactors which are not critical. In general, the neutron popula- 
tion of such a reactor, if not zero, will vary with time (exception--subcritical reactor 
with source; see below). 

13.1 General Concepts and Definitions 

If the reactor, although not critical, is nearly so, the spatial distribution of neu- 
trons in it will be very nearly the same as in the critical reactor. The general sig- 
nificance of quantities used to specify the characteristics of noncritical assemblies 
can best be appreciated in terms of such cases, which are also the ones occurring most 
frequently in practical problems. These quantitiest k.,,, k,,, and p are alternative 
descriptions of the relation between the number of neutrons in a given generation of 
the chain reaction and the number in the immediately succeeding generation. The 
effective multiplication factor k,,, is just t,he ratio of these two numbers: 

k 
No. neutrons born in (n + 1)st generation 

c/l = No. neutrons born in nth generation 

The excess multiplication factor k.. is 

c 
No. neutrons born 1 ( No. born in 

k,, = kell - 1 = - 
in (n + 1)st generation - nth generation 

No. neutrons born in nth generation ww 
= No. extra neutrons produced per generation 

No. neutrons starting the generation 
The reactivity p is 

k p=-E 
ken 

(230) 

The value of k,,, in terms of the characteristic reactor quantities (Sec. 5) is 

k 
k~dE,,BB) 

e” = p(1 + L*B*) 
(23x1 

where R2 corresponds t,o the fundamental mode in the solution of the wave equation 

V%#J + B’+ = 0 V%#J + B’+ = 0 

for the reactor with proper boundary conditions. for the reactor with proper boundary conditions. Equation (231) may be regarded Equation (231) may be regarded 
as the definition of k,,, for reactors which can be described by an equation of that as the definition of k,,, for reactors which can be described by an equation of that 
type, irrespective of whether or not the reactor is near criticality. type, irrespective of whether or not the reactor is near criticality. 

t The use of these symbols follows that of Weinberg and of Classtone and Edlund. Other usages are 
extant. 
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Evidently, by Eq. (229), if an average time between generations of neutrons l.,, 
(the average generation time) could be specified (and if the spatial distribution of 
neutrons in the reactor were independent of time), the time dependence of neutron 
density R. in the reactor would be given by 

cl?1 ,bZ k 
-=n- 
dt L, 

k 
(232) 

n = no exp -F t 
1 SW 

Because a fraction of the neutrons are delayed (i.e., emitted in the process of radio- 
active decay of fission products), it is possible to specify an average generation time 

‘only if Ic,, is very small (about 0.0004 or less) and if k., has been constant for some 
time. In general, the time behavior of the neutron population is a complicated 
function of reactivity, the delayed-neutron characteristics, and the prompt neutron 
lifetime (see Art. 13.2 and Sec. S-1). 

If an extraneous source of neutrons, S neutrons/set, is introduced into a subcritical 
reactor, the neutron flux in the reactor will, after a time, reach some steady value. 
In this condition the production of neutrons by the source plus fissions is just balanced 
by the loss of neutrons by leakage plus absorption. If the reactor is nearly critical, 
the number of neutrons produced per second is, by relation (228), S directly from the 
source plus Sk.,, from the immediately preceding generation plus S(k,ff)* from the 
generation before that, etc.; i.e., 

No. neutrons born per see = S(1 + k,ff + keff2 f ke/f3 -I- * * *) 
s (233) =- 

1 - key/ 

In other words, the source production is increased by a factor l/(1 - Ic.,,) by the 
noncritical chain reaction. This factor l/(1 - k,,,) is sometimes called the mul- 
tip&&ion M of the reactor. Strictly speaking, the source is multiplied by this 
exact factor only if the source is distributed throughout the reactor in the same way 
as the fissions are distributed in the critical reactor (i.e., according to the solution of 
the wave equation 

v2+ + B2+ = 0 

However, if the reactor is not much subcritical, and if the source is located well inside 
the core, the above expression for the multiplication will hold to within a factor of 
2 or 3. 

. 

13.2 Kinetic Behavior of a Bare,t Near-critical Reactor with Delayed Neutrons 

The emission of delayed neutrons accompanies the fl decay of a certain small group 
of fission products. The rate of emission by each member of the group of delayed 
emitters decreases exponentially with time after fission. There are six species of 
fission products which emit delayed neutrons in sufficient quantity to have an impor- 
tant effect on reactor kinetics. The fraction of total fission neutrons emitted by the 
ith member of the group of delayed emitters is designated by the symbol pi, the decay 
constant of the emitter is designated by Xi, and the concentration of the emitter per 
unit volume of reactor by 6’;. Thus, if an instantaneous burst of N fission neutrons 
per unit volume of reactor were to occur at t = 0, the concentration C; of the ith 
emitter species resulting from the burst would vary with time as 

Ci = N&e-X’ (234) 

and the rate of emission of delayed neutrons per unit volume by that emitter would 

t Although the following discussion is based on hare reactor concepts, the results are applicable to 
simple reAected reactors provided an appropriate value is used for the effective neutron lifetime. 
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(No. delayed neutrons of ith species emitted)/(sec) (unit volume) = X& = NXifli&t 
(23% 

Values of Xi and pi are tabulated for thermal-neutron fission of U2z6 in Tables 1 to 4 
of Sec. S-l and Table 39 of Sec. l-1.t 

The number of prompt fission neutrons produced per unit vollme per second in a 
reactor operating with a thermal-neutron flux density + is (k/p)Z,+(l - fl), and if 
the concentrations Ci of all the delayed emitters are known, the rate of emission of 

delayed neutrons per unit volume can be specified as 
c 

C&. If the reactor is 

sufficiently near criticality that the spatial distribution 0; flux does not differ sub- 
stantially from that which would exist in the c&cd react.or, the leakage of neutrons 
can be expressed in terms of the geometrical buckling B* of the critical react0r.S If 
the assumption is made that the effective energy of the delayed neutrons is the same 
as that of the prompt ones,0 the slowing-down density in the reactor will be 

9= [i z,+(I - 8) + 2 CiAi] Pm(EarB*) 

where P,(E,,B,) is the Fourier transform of the infinite slowing-down kernel (see 
Art. 5.3). The balance equation which holds for thermal neutrons at every point 
in the reactor is 

-DBzc$ - z,+ + [% ~,+(l - p) + 1 Cik] Pm(EqB*) = $ = i 2 (237) 
i 

where v is the average velocity of thermal neutrons. Applying the definition of k,l/ 
[Eq. (231)J and the relation L2 = D/Z,, Eq. (237) reduces to 

[b/(1 - B) - 1]+ + p g 2 = i CA = (1 + L;B*)uza z 
The quantity l/[(l + L*B*)v&] is the effective lifetime of thermal neutrons in the 
finite reactor (see Art. 13.3) and is designated by the symbol 2. To specify completely 
the variation of + with time, Eq. (238) must be coupled with the six differential 
equations which specify the variation of the concentration C’s of the six delayed- 
neutron emitters. The complete set of equations becomes 

[k&f/(1 - /3) - I]+ + $$C CiXi = 1 $f 
a * 

dCi -= 
dt 

(239) 

It is quite easy to obtain the solution of Eqs. (239) in the asymptotic case for which 
the reactor has been in a state of constant positive excess reactivity for an effectively 
infinite time. For this case $ and all the Ci are increasing exponentially with a con- 
stant period y T, whose value is to be determined. 

Assuming 
+ = A&/T Ci = a&T 

d+ 4 et,T dC< -= 
dt T 

_ = ai et/T 
dt T 

t See also Ref. 14. For delayed-neutron data on other isotopes, 880 Refs. 15 snd 1F. Table 5 of 
Sec. 1-l lists other data contained in this handbook. 

$ Many practical reactor kinetics problems concern reactors which are not far from criticality, for 
which this approximation is valid. For the more general c&se, see Ref. 13. 

5 This sssumption should be examined critically for cases in which extreme nccuracy is necessary, as. 
for example, when reactor periods are used for the measurement of reactivity changes. 

7 This result is to be expected on physical grounds; mathematicslly it results from the complete 
solution of Eqs. (239). 
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substitution in Eqs. (239) yields 

I 
A 

3 
k La 

ai = (l/T) + xi p 

and (1 - ~)k.t/ - 1 + k,// c 
i 

(l,?; xi = f (240) 

recognizing that B = 
c 

p;, Eq. (240) can be reduced to 

i 

k elf -1 -=- (241) 
k slf 

This equation, often called the inhour equation, relates the asymptotic or stable reactor 

period to the reactivity [note that (k,/r - 1)/k.// = p =, reactivity]. It is a simple 

relation which is much used in experimental reactor physics for evaluating reactivity 
from the measured reactor period. Figure 20 gives T as a function of p for two values 

of the lifetime 1. Also plotted is the curve for 1 = 0. Note that curves for other 

.- 10-d 2 3 4 6 8 to-3 2 3 4 6 8 lO-2 2 

k -I ,,‘- 
k.ff 

Fm. 20. The Inhour relation (delayed-neutron data). 



6-l 14 REACTOR PHYSICS [SEC. 6 

values of 1 can bc easily constructed from the latter curve simply by adding the 
term l/Tk,ll. 

For values of p which are greater than p, the period becomes very short and the 
term (l/2’) becomes large compared with Xi. When Xi can be neglected, Eq. (241) 
reduces to 

p =&,+C”i=&,+p t 
or Tzz 1 

k.t/b - B) 

This approximation is usually good for p > (B + 0.0025). 
In addition to the single positive value of T which will satisfy Eq. (241) (for a 

positive p), there are n negative values which will also satisfy the equation (n is the 
number of delayed-neutron groups). Thus the complete solution of Eqs. (239), for 

1001 , , II I I I I / I 1 
I Y I 

I I /I I 1 

I I A I I I/ I I I 

40 ’ /I 
I /I I I/ I I I I 

30 

4 

3 

2 

I I I I I I I I 
0 I 2 3 4 5 6 7 8 9 

SECONDS 
FIG. 21. Time variation of neutron flux 9(t) after instantaneous application of reactivity p 
to critical reactor operating at steady flux +o. 2 = 1 X lo-’ sec. 

the case in which p is constant after assuming some initial value at time t = 0, is a 
sum of exponentials: 

,g, = .4,#/To + Al&‘J’l + . . * + A,e’/Tn (243 

For p positive, TO and A0 are positive and TO is equal to the asymptotic value dis- 
cussed above; all the other A’s and T’s are negative. For p negative, To and all the 
other T’s are negative and all the A’s are positive. This general solution is discussed 
at length in Sec. 8-1 and in texts on reactor theory (e.g., Glasstone and Edlund). The 
results for a particular value of 1 (1OP set) are plotted in Fig. 21. 

Since the general solution of Eqs. (239) for any particular 1 involves considerable 
labor, it is useful t,o find approximations which can be used when only rough values are 
needed. A very crude approximation to the solution for positive instantaneous 
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changes in reactivity can be made in the following way: The problem is assumed to 
be that of determining the variation of flux in a reactor which has been operating for 
an effect,ively infinite time at constant flux 40 prior to the time to, when the effective 
multiplication constant is increased instantaneously from the value 1 to the value 
k,,, > 1 and is maintained at that value for all time later than to. 

Just prior to the reactivity increase delayed neutrons were being formed at some 
steady rate such that their direct (unmultiplied) contribution to the flux 4O was 400. 
The value of the prompt effective multiplication constant was (kc~,)pmmpt = 1 - fl. 
The prompt multiplication (Mprompt) was I/[1 - (kc~~)urom,,t] = I/& Thus the fiux 

SECOPiOS 
Fro. 22. Time variation of neutron flux 4(t) after instantaneous application of negative 
reactivity p to critical reactor operating at steady flux 4,,. 2 = 1 X lo-’ sec. . 

40 can be considered to arise from the prompt multiplication of the delayed-neutron 
source. This concept is illustrated by the identity 

4 flux due directly prompt 
0 

= 

to delayed sources >( multiplication > 
= 40s; = 40 

For a short time after the effective multiplication constant is increased to the new 
value k.,,, the flux due directly to delayed sources will remain nearly at the old value 
4,$. The prompt multiplication will, however, have increased to the value 

M 
1 

w=vt = 1 - k,,,(l - 8) 

Consequently, the total flux will be expected to rise rapidly to a new value 41, given by 

41 
4OP 4oB 

= = -- 1 - k,,,(l - 8) kh/ - k,z 
@w 
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Quite evidently the approximation does not apply if k., > 8. For small.er values of 
k.. a rough approximation to the kinetic behavior can be made by assummg that the 
flux rises instantaneously to the value given by Eq. (244) and thereafter follows the 
asymptotic variation, as given by Eq. (241). Such a curve is drawn in Fig. 21 for 
comparison with the correct curve. 

The kinetic behavior of the neutron flux for negative values of reactivity is not 
strongly dependent on 2 after the first few seconds. Thus the curves for negative p in 
Fig. 22 can be used for other values of 1 except during the period of rapid flux decrease. 

13.3 The Effective Neutron Lifetime 

In the development of Eq. (238) the time required for neutrons to slow down was 
neglected; consequently the effective lifetime 1 which appears in the equation is 
really the effective lifetime of thermal neutrons It?,. The physical interpretation of 
the expression for llh is as follows: The number of neutrons absorbed per unit volume 
per second, if the steady neutron density is n, is 

Absorption/(cm3)(sec) = nu& 

The loss of thermal neutrons by leakage is [Eq. (102)l 

No. thermal neutrons leaking from 1 cms/sec = nuZ.(L*B*) 

Effective thermal-neutron lifetime = 
neutron density 

(loss of neutrons)/(cm”)(sec) 
12 1 

= nuZ,(l + UB2) = VZ.(l + Leg*) 
(245) 

The true effective neutron lifetime is made up of the effective thermal lifetime plus 
the effective fast lifetime. Equation (254) is the correct expression for the effective 
lifetime in the two-group approximation. If the reactor is bare and if its properties 
are uniform, Eq. (254) reduces to 

From Eqs. (92) and (252), 

4/ _ 2. + Da2 4. * 21 + DJB* -- and - = 
4. ZJ 4J* 21 

If the small difference between k and k, is neglected and the reactor is near enough 
criticality that the characteristic equation (87) may be assumed to hold, the equation 
for 1 becomes 

I= 
1 

&x7.(1 + L2B’) + 812 a ,(I : hJ’B*) 
(246) 

where I, is the average velocity of the thermal neutrons, fiJ is the average velocity of 
the fast neutrons, Z,. is the macroscopic thermal absorption cross section, and 2.1 is 
the macroscopic “slowing-down cross section.” 

If the reactor is reflected by a material having a thermal-neutron lifetime much 
different from that of the core, the effective lifetime for the reactor may be significantly 
different from that for the equivalent bare reactor. Equation (254) may be used to 
determine the eflective lifetime for this case. Since, however, the integration of the 
flux and adjoint functions over the reactor volume may be quite tedious, an alternate 
method is sometimes useful. The effective fast lifetime, which is usually a small 
fraction of the total lifetime, is taken to be that of the equivalent bare reactor, as 
given by the last term of Eq. (246), and the effective thermal lifetime is computed 
by a scheme devised by R. P. Feynman, which proceeds as follows: It is assumed that 
the criticality condition for the reactor has already been determined by the methods of 
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Art. 7 or 8 or by some other method. A small amount of l/v absorber is then added 
uniformly throughout the reactor (core plus reflector). The average macroscopic 
absorption cross section due to this added poison is designated 2,,. The poisoned 
reactor is then solved by some convenient method (Art. 7 or 8), and its effective 
multiplication constant (k,,,) is determined. The quantity k,,, will, of course, be 
less than unity. Since the prompt neutron lifetime 1 is to be determined, it is assumed 
that all fission neutrons are prompt. Then, by Eq. (232), the rate of change of flux 
at any point in the poisoned reactor where the instantaneous value of flux is + is 

d4 4bkff - 1) -= 
dt 1 

Recalling, however, that the reactor would be critical (and flux constant) except for 
the presence of the added poison, one concludes that the rate of decrease of neutron 
density is just equal to the rate of absorption by the added poison and the rate of 
change of flux is 

dd, -= 
clt 

Equating the two rates of change of flux above yields 

Nw/ - 1) = 
1 

+4z p a 

Or, more generally, if the uniform addition of thermal-neutron absorber of average 
macroscopic cross section E,, results in a reactivity change A&t,, the prompt thermal- 
neutron lifetime It,+ is 

‘%JJ 
lrh = - __ 

oz, 
(247) 

Note that the above reasoning involves the tacit assumption that the addition of the 
thermal absorber does not change the flux distribution to an important extent. This 
can be true only if the amount of absorber added is quite small. 

14 PERTURBATION RELATIONS 

It is often useful to evaluate the effect on reactivity of small changes in the proper- 
ties of an initially critical reactor. Perturbation theories have been developed which 
give approximate evaluations of such small changes, whether the changes be localized 
in space or distributed over the entire react.or. Perturbation treatments can be 
based on any of the group formulations of the reactor equation. Only specific 
formulas from the simpler treatments are given here. For general treatments and 
for the theory of the method other sources should be consulted (e.g., Refs. 7, 17, 
and 18). 

14.1 First-order, Two-group Perturbation Formulas 

The first-order, two-group perturbation theory was first published by L. W. Nord- 
heim (CP-2824). This form of the theory is the most widely used in thermal reactor 
calculations. In the development of the formulas certain terms involving second 
orders of small quantities are neglected, but the major assumption is tha.t the perturba- 
tion does not change significantly the flux distribution in the reactor. This condi- 
tion can generally be used as a criterion of the applicability of the method. 

In deriving t,he expression which evaluates the perturbation in terms of reactivit.y, 
the period of the perturbed reactor is first determined formally, and the period is 
then related to reactivity by means of the inhour equation [Eq. (241)]. Thus the 
starting point of the development is the time-dependent, two-group reactor equations 

y----. - - ------__ 



6-118 REACTOR PHYSICS 

(the notation of 4rt. 7.1 is used here) 

D, v2+. - %A + zp#v = ; s 

[SEC. 6 

D/ vV/ - 2~ + k,~~~, + c 
civi = 1 !e?!! 

i 8, at 

aCi 
- = Bikpu.4a - Civi 
at 

(248) 

where lc, is the prompt infinite multiplication factor [k = b(l +-$A)]. 

It is assumed that the solutions for the fluxes are separable into ipace-dependent 
and time-dependent terms, the latter being exponentials of reciprocal period Y. 
Equations (248) can then be written 

D,v24, - &41 + 2141 = y 4. 
VII 

DJ v24J - 214, + k&4, = y ff + kG.1 439 

(249) 

i 

The adjoint functions +I* and +** are defined by the equations 

D, v24.* - T*4** + lc,Z.4,,* = Y $ + k&z 4/*x) 
v + vi t 

v4f* 
(250) 

D/v24/* - Z/4/* + z/4,* = vf 

No discussion of the general significance and properties of the adjoint funct.ions will 
be given here; the approach will be taken that they are simply functions useful in the 
evaluation of perturbation effects. It can be shown that identical values of Y satisfy 
Eqs. (249) and (250) and that both equations define the same criticality condition 
(V = 0). The procedure for determining the effects of small perturbations on the 
critical reactor is as follows: 

1. Write out the two-group equations for the fast and slow fluxes (+ and 4.) in 
the critical reactor: 

Da vz4. - ~4s + z/4/ = 0 
D/ v”4/ - z/4/ + k&4, = 0 (251) 

and the equations for the fast and slow adjoint functions (+f* and +.*) in the same 
critical reactor: 

D. v24,* - Z,4b.* + k&4/ * = 0 

D, v24/* - z/4/* + z/4.* = 0 
(252) 

2. Solve the flux equations (251) for the critical values of the buckling BZ by the 
methods of Arts. 7 or 8, and write out the solutions for the fast and slow fluxes as 
indicated in those articles. 

3. Using the critical value of the buckling determined in 2 above, determine a,lso 
the solutions for the fast and slow adjoint functions +I* and +.*. Note that Eqs. (252) 
are identical in form with Eqs. (251), the only difference being the changes in coeffi- 
cients of the final terms. The methods of solution for $I* and +.* are therefore the 
same as those used in the solutions for +f and 4.. 

4. The values for the fluxes and adjoint functions having been obtained as func- 
tions of position over the entire volume of the reactor (core plus reflector), the effect 
on k,,/ of local changes in any of the reactor properties can be evaluated in terms of 
these functions. The tot.al effect on k.ff can be evaluated by integrating all the 
local perturbations over the entire volume of the reactor. The expression for the 

. 
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total fractional change in ksff, Gkaf,/kaff, is 

6-119 

6k elf 1 -= 
k e/J 

I 
k,w&*dv 

rertctor volume [dJs4,*swJ - 4.4.* 8% 

core volume 

+ (+/&* - ++,*) BZ/ + V&, V&* 6D, + v’$‘J V+J* 6Df]dv (253) 

The quantity s(k~,) in the above equation may be written in either of two ways: 

6(kI;,) = 6(&5) = 2125 61 + 9 as 

Or 6(kza) = z, sk + k 6Zs 

Note that since each term in both numerator and denominator of Eq. (253) contains 
a single product of a flux and an adjoint function, the absolute normalizations of both 
the flux and the adjoint are immaterial. The proper relationships must, of course, be 
maintained between 4, and & and between &* and 4J*. 

14.2 The Neutron Lifetime 

First-order, two-group perturbation theory gives the following expression for the 
neutron lifetime I* in the finite reactor: 

1" = I reactor volume 
[(l/fiJ4&8* + (l/~J~4f~f*ldV 

(254 

J core dume 
k,&$,4f* dV 

where B, is the average velocity of a typical thermal neutron and 8, is the average 
velocity of a typical neutron during its lifetime as a fast neutron. The quantity 2, 
is, of course, the average macroscopic absorption cross section for thermal neutrons. 

14.3 Nonuniform Perturbations of a Homogeneous Bare Reactor 

The spat.ial distributions of both the fluxes and the adjoint functions in a homo- 
geneous bare reactor are given by the solut,ions of the wave equation 

~24 + B?4 = 0 

Solutions of tHe equation arc given for the usual reactor shapes in Table 5. If the 
solution from column 4 of that table is taken as the solution for both 4.(r) and 6*(r), 
the solutions for @I(T) and +I*(?) are simply 

4I(‘) = BzD;,+ za s$&) 

#v*(r) = B2D;v+ xa +**(7-) 
UP 

With these expressions for the fluxes and adjoints the effects of local or distributed 
perturbations can be evaluated by Eq. (253). 

14.4 Uniformly Disfributed Perturbation of a Homogeneous Bare Reactor 

For the case of perturbations dist,ributed uniformly in a homogeneous bare reactor, 
Eq. (253) reduces to 

%ff 6(rl%s) 1 --- 2 + @J/~J)~' 63 

k elf rl%s 1 + (D,/&)B-= Es 1 f (DIIZI)B’ Zt 
_ (D,/z,)B2 6D. (DJ/~J)B' -- t!?l (257) 

. 1 + (D./zW Da 1 + (D,P/)B2 D/ 
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The expression can, of course, he obtained also by differentiation of the characteristic 
eouation 

k IlZ25/~~ 
ef’ = [l + (D*/T3*)B*l[l + (~fl~cl)~“l 

Frequently, for uniform perturbations, it is more convenient to use the expression 
derived from the more usual statement of the characteristic equation: 

k 
e’r = (1 + L&l + TB2) 

The pcrturhation expression in terms of these quantities is 

sk cJl 6k L2B2 6TA2 rB2 6r L2Bz 7B2 __=_-_____---- -----+- 
k-e,, k 1 + T?B2 L2 1 + rB= T 1 f L2B2 1 + rB2 > 

6B2 (260) 
B2 

The above expressions can be used to evaluate the effects of uniform changes of 
core propertics in reflected reactors provided these changes do not have a significant 
effect on reflector savings. It is usually safe to assume that changes in k alone will ~- 
not produce important changes in reflector savings. Changes in BZ will not cause 
large changes in reflector savings provided the reactor is already fairly large (say 
k, 2 1.2 for criticality). Changes in L’ or 7 will, in general, have important effects 
on reflector savings if they are both important in determining neutron leakage. If 
either L* or 7 is small compared with (Lz + r), small changes in it will not have an 
important effect on reflector savings. 

14.6 Perturbations In Lumped Reactors 

The effects of perturbations in lumped reactors can be evaluated by the methods 
described in the foregoing parts of this section provided effective values for the per- 
turbations over a typical cell of the reactor are used. These effective values may be 
determined by methods analogous to those described in Art. 9. 

Often in lumped reactors the effects of perturbations on neutron leakage are not 
important, and the effect on Jr.,,, can be evaluated in terms of changes in k alone, 
where k is expressed in terms of the four-factor formula 

When effects on leakage are unimportant, 

The effects of the perturbation on 7, 6, p, andf are determined by the methods applied 
in Sec. 9. 
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